Finding equivalent keys in openstreetmap: semantic similarity computation based on extensional definitions

I. Majić, S. Winter, Martin Tomko
{"title":"Finding equivalent keys in openstreetmap: semantic similarity computation based on extensional definitions","authors":"I. Majić, S. Winter, Martin Tomko","doi":"10.1145/3149808.3149813","DOIUrl":null,"url":null,"abstract":"Volunteered Geographic Information (VGI) projects, such as Open-StreetMap (OSM) enable the public to contribute to the collection of spatial data. In OSM, users may deviate from spatial feature annotation guidelines and create new tags (i.e. key=value pairs), even if recommended tags exist. This is problematic, as undocumented tags have no set meaning, and they potentially contribute to the dataset heterogeneity and thus reduce usability. This paper proposes an unsupervised approach to identify equivalent documented attribute keys to the used undocumented keys. Based on their extensional definitions through their values, co-occurring keys and geometries of the features they annotate, the semantic similarity of OSM keys is evaluated. The approach has been tested on the OSM dataset for the state of Victoria, Australia. Results have been evaluated against a set of manually detected equivalent keys and show that the method is plausible, but may fail if some assumptions about tag use are not enforced, e.g., semantically unique tags.","PeriodicalId":158183,"journal":{"name":"Proceedings of the 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3149808.3149813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Volunteered Geographic Information (VGI) projects, such as Open-StreetMap (OSM) enable the public to contribute to the collection of spatial data. In OSM, users may deviate from spatial feature annotation guidelines and create new tags (i.e. key=value pairs), even if recommended tags exist. This is problematic, as undocumented tags have no set meaning, and they potentially contribute to the dataset heterogeneity and thus reduce usability. This paper proposes an unsupervised approach to identify equivalent documented attribute keys to the used undocumented keys. Based on their extensional definitions through their values, co-occurring keys and geometries of the features they annotate, the semantic similarity of OSM keys is evaluated. The approach has been tested on the OSM dataset for the state of Victoria, Australia. Results have been evaluated against a set of manually detected equivalent keys and show that the method is plausible, but may fail if some assumptions about tag use are not enforced, e.g., semantically unique tags.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在openstreetmap中寻找等效键:基于扩展定义的语义相似度计算
自愿地理信息(VGI)项目,如开放街道地图(OSM),使公众能够为空间数据的收集做出贡献。在OSM中,用户可能会偏离空间特征标注指南,创建新的标签(即键=值对),即使推荐的标签已经存在。这是有问题的,因为未记录的标签没有固定的含义,它们可能会导致数据集异构,从而降低可用性。本文提出了一种无监督的方法来识别等效的文档属性键和使用的未文档键。基于OSM键的值、共出现键及其标注特征的几何形状的扩展定义,评估了OSM键的语义相似度。该方法已经在澳大利亚维多利亚州的OSM数据集上进行了测试。结果已经根据一组手动检测到的等效键进行了评估,并表明该方法是合理的,但如果没有强制执行关于标签使用的一些假设,例如,语义上唯一的标签,则可能失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image-based classification of GPS noise level using convolutional neural networks for accurate distance estimation Automatic alignment of geographic features in contemporary vector data and historical maps Generating synthetic mobility traffic using RNNs Deep learning for multisensor image resolution enhancement Recognizing terrain features on terrestrial surface using a deep learning model: an example with crater detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1