Pattern recognition of finger movement detection using Support Vector Machine

R. Darmakusuma, A. Prihatmanto, Adi Indrayanto, T. Mengko
{"title":"Pattern recognition of finger movement detection using Support Vector Machine","authors":"R. Darmakusuma, A. Prihatmanto, Adi Indrayanto, T. Mengko","doi":"10.1109/ICSENGT.2012.6339335","DOIUrl":null,"url":null,"abstract":"This paper describes signal processing of surface electromyography (sEMG) for finger movement detection. Stoke survivors could use this application to retrain or helping them in their activities. This assistive technology will help them in order to improve the functional capabilities. The signal processing in this experiment is using 256Hz sampled data of sEMG signal. Three fingers of right hand is detected by using three channels of sEMG signal sources. System using Butterworth bandpass filter to eliminate noises. The filter using cut-off frequency 10Hz and 40Hz. Some features for the detection is built from statistical approach. System is using Support Vector Machine (SVM) to detect and classify fingers movement by using those features. From experiment, the accuracy of the sytem is about 98.3%.","PeriodicalId":325365,"journal":{"name":"2012 International Conference on System Engineering and Technology (ICSET)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on System Engineering and Technology (ICSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENGT.2012.6339335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes signal processing of surface electromyography (sEMG) for finger movement detection. Stoke survivors could use this application to retrain or helping them in their activities. This assistive technology will help them in order to improve the functional capabilities. The signal processing in this experiment is using 256Hz sampled data of sEMG signal. Three fingers of right hand is detected by using three channels of sEMG signal sources. System using Butterworth bandpass filter to eliminate noises. The filter using cut-off frequency 10Hz and 40Hz. Some features for the detection is built from statistical approach. System is using Support Vector Machine (SVM) to detect and classify fingers movement by using those features. From experiment, the accuracy of the sytem is about 98.3%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的手指运动检测模式识别
本文描述了用于手指运动检测的表面肌电图(sEMG)信号处理。斯托克城的幸存者可以使用这个应用程序对他们进行再培训或在他们的活动中提供帮助。这种辅助技术将帮助他们提高功能能力。本实验的信号处理采用256Hz的表面肌电信号采样数据。利用三个通道的表面肌电信号源对右手的三个手指进行检测。系统采用巴特沃斯带通滤波器消除噪声。该滤波器采用截止频率10Hz和40Hz。检测的一些特征是用统计方法构建的。系统利用支持向量机(SVM)对手指运动特征进行检测和分类。实验结果表明,该系统的准确率约为98.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and implementation of the interface of simulation game of nuclear application (SAN) (Case study: Diagnosis of coronary artery disease using 99mTc-Tetrofosmin) Design and implementation Infrared Guitar based on playing chords Prediction system of economic crisis in Indonesia using time series analysis and system dynamic optimized by genetic algorithm Multi-criteria selection for TNB transmission line route using AHP and GIS Generic PSV systems and their engine models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1