{"title":"Power-aware complexity-scalable multiview video coding for mobile devices","authors":"M. Shafique, B. Zatt, S. Bampi, J. Henkel","doi":"10.1109/PCS.2010.5702506","DOIUrl":null,"url":null,"abstract":"We propose a novel power-aware scheme for complexity-scalable multiview video coding on mobile devices. Our scheme exploits the asymmetric view quality which is based on the binocular suppression theory. Our scheme employs different quality-complexity classes (QCCs) and adapts at run time depending upon the current battery state. It thereby enables a run-time tradeoff between complexity and video quality. The experimental results show that our scheme is superior to state-of-the-art and it provides an up to 87% complexity reduction while keeping the PSNR close to the exhaustive mode decision. We have demonstrated the power-aware adaptivity between different QCCs using a laptop with battery charging and discharging scenarios.","PeriodicalId":255142,"journal":{"name":"28th Picture Coding Symposium","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Picture Coding Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2010.5702506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We propose a novel power-aware scheme for complexity-scalable multiview video coding on mobile devices. Our scheme exploits the asymmetric view quality which is based on the binocular suppression theory. Our scheme employs different quality-complexity classes (QCCs) and adapts at run time depending upon the current battery state. It thereby enables a run-time tradeoff between complexity and video quality. The experimental results show that our scheme is superior to state-of-the-art and it provides an up to 87% complexity reduction while keeping the PSNR close to the exhaustive mode decision. We have demonstrated the power-aware adaptivity between different QCCs using a laptop with battery charging and discharging scenarios.