{"title":"The General Kinematic Pair of a Cam Mechanism","authors":"J. Ondrášek","doi":"10.5772/INTECHOPEN.86682","DOIUrl":null,"url":null,"abstract":"At present, there are still increasing demands on the performance parameters of machinery equipment as well as cam mechanisms that belong to it. For this reason, the operating speeds and hence inertial effects of moving bodies, which limit the utilizable working frequency of machines, are increasing. These facts are the cause of higher wear and a decrease of the overall lifetime and reliability of machines. The force ratios in the general kinematic pair created by contact between the cam and the follower cause the contact stress. The generated stresses are transient and have a pulse shape. Fatigue damage of the cam working surface or the follower working surface may occur after exceeding a certain limit value of these stresses during the cam mechanisms running. This damage is in the form of cavities (pitting), which develop from cracks on the working surface. The chapter aim is to outline the issues of the dynamic stress of a general kinematic pair of a cam mechanism. One of the possible methods of the complex solution of the stress of the general kinematic pair is to use the possibilities of the finite element method in combination with the knowledge and conclusions of the contact mechanics.","PeriodicalId":174909,"journal":{"name":"Kinematics - Analysis and Applications","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics - Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.86682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
At present, there are still increasing demands on the performance parameters of machinery equipment as well as cam mechanisms that belong to it. For this reason, the operating speeds and hence inertial effects of moving bodies, which limit the utilizable working frequency of machines, are increasing. These facts are the cause of higher wear and a decrease of the overall lifetime and reliability of machines. The force ratios in the general kinematic pair created by contact between the cam and the follower cause the contact stress. The generated stresses are transient and have a pulse shape. Fatigue damage of the cam working surface or the follower working surface may occur after exceeding a certain limit value of these stresses during the cam mechanisms running. This damage is in the form of cavities (pitting), which develop from cracks on the working surface. The chapter aim is to outline the issues of the dynamic stress of a general kinematic pair of a cam mechanism. One of the possible methods of the complex solution of the stress of the general kinematic pair is to use the possibilities of the finite element method in combination with the knowledge and conclusions of the contact mechanics.