{"title":"Reproducing concurrency failures from crash stacks","authors":"F. A. Bianchi, M. Pezzè, Valerio Terragni","doi":"10.1145/3106237.3106292","DOIUrl":null,"url":null,"abstract":"Reproducing field failures is the first essential step for understanding, localizing and removing faults. Reproducing concurrency field failures is hard due to the need of synthesizing a test code jointly with a thread interleaving that induce the failure in the presence of limited information from the field. Current techniques for reproducing concurrency failures focus on identifying failure-inducing interleavings, leaving largely open the problem of synthesizing the test code that manifests such interleavings. In this paper, we present ConCrash, a technique to automatically generate test codes that reproduce concurrency failures that violate thread-safety from crash stacks, which commonly summarize the conditions of field failures. ConCrash efficiently explores the huge space of possible test codes to identify a failure-inducing one by using a suitable set of search pruning strategies. Combined with existing techniques for exploring interleavings, ConCrash automatically reproduces a given concurrency failure that violates the thread-safety of a class by identifying both a failure-inducing test code and corresponding interleaving. In the paper, we define the ConCrash approach, present a prototype implementation of ConCrash, and discuss the experimental results that we obtained on a known set of ten field failures that witness the effectiveness of the approach.","PeriodicalId":313494,"journal":{"name":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106237.3106292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Reproducing field failures is the first essential step for understanding, localizing and removing faults. Reproducing concurrency field failures is hard due to the need of synthesizing a test code jointly with a thread interleaving that induce the failure in the presence of limited information from the field. Current techniques for reproducing concurrency failures focus on identifying failure-inducing interleavings, leaving largely open the problem of synthesizing the test code that manifests such interleavings. In this paper, we present ConCrash, a technique to automatically generate test codes that reproduce concurrency failures that violate thread-safety from crash stacks, which commonly summarize the conditions of field failures. ConCrash efficiently explores the huge space of possible test codes to identify a failure-inducing one by using a suitable set of search pruning strategies. Combined with existing techniques for exploring interleavings, ConCrash automatically reproduces a given concurrency failure that violates the thread-safety of a class by identifying both a failure-inducing test code and corresponding interleaving. In the paper, we define the ConCrash approach, present a prototype implementation of ConCrash, and discuss the experimental results that we obtained on a known set of ten field failures that witness the effectiveness of the approach.