Massively parallelized support vector machines based on GPU-accelerated multiplicative updates

C. Kou, Chao-Hui Huang
{"title":"Massively parallelized support vector machines based on GPU-accelerated multiplicative updates","authors":"C. Kou, Chao-Hui Huang","doi":"10.1109/CIDM.2014.7008700","DOIUrl":null,"url":null,"abstract":"In this paper, we present multiple parallelized support vector machines (MPSVMs), which aims to deal with the situation when multiple SVMs are required to be performed concurrently. The proposed MPSVM is based on an optimization procedure for nonnegative quadratic programming (NQP), called multiplicative updates. By using graphical processing units (GPUs) to parallelize the numerical procedure of SVMs, the proposed MPSVM showed good performance for a certain range of data size and dimension. In the experiments, we compared the proposed MPSVM with other cutting-edge implementations of GPU-based SVMs and it showed competitive performance. Furthermore, the proposed MPSVM is designed to perform multiple SVMs in parallel. As a result, when multiple operations of SVM are required, MPSVM can be one of the best options in terms of time consumption.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present multiple parallelized support vector machines (MPSVMs), which aims to deal with the situation when multiple SVMs are required to be performed concurrently. The proposed MPSVM is based on an optimization procedure for nonnegative quadratic programming (NQP), called multiplicative updates. By using graphical processing units (GPUs) to parallelize the numerical procedure of SVMs, the proposed MPSVM showed good performance for a certain range of data size and dimension. In the experiments, we compared the proposed MPSVM with other cutting-edge implementations of GPU-based SVMs and it showed competitive performance. Furthermore, the proposed MPSVM is designed to perform multiple SVMs in parallel. As a result, when multiple operations of SVM are required, MPSVM can be one of the best options in terms of time consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于gpu加速乘法更新的大规模并行化支持向量机
本文提出了一种多并行支持向量机(MPSVMs),用于处理多个支持向量机需要同时执行的情况。提出的MPSVM基于非负二次规划(NQP)的优化过程,称为乘法更新。通过图形处理单元(gpu)并行化支持向量机的数值过程,所提出的MPSVM在一定的数据大小和维度范围内表现出良好的性能。在实验中,我们将所提出的MPSVM与其他基于gpu的支持向量机的前沿实现进行了比较,并显示出具有竞争力的性能。此外,所提出的MPSVM被设计为并行执行多个支持向量机。因此,当需要对SVM进行多次操作时,MPSVM在时间消耗方面可能是最佳选择之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic relevance source determination in human brain tumors using Bayesian NMF Interpolation and extrapolation: Comparison of definitions and survey of algorithms for convex and concave hulls Generalized kernel framework for unsupervised spectral methods of dimensionality reduction Convex multi-task relationship learning using hinge loss Aggregating predictions vs. aggregating features for relational classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1