Collecting Simulation Scenarios by Analyzing Physical Test Drives

P. Minnerup, Tobias Kessler, A. Knoll
{"title":"Collecting Simulation Scenarios by Analyzing Physical Test Drives","authors":"P. Minnerup, Tobias Kessler, A. Knoll","doi":"10.1109/ITSC.2015.467","DOIUrl":null,"url":null,"abstract":"Ensuring safe operation of autonomous vehicles requires testing them including critical combinations of obstacle configurations plus sensor and actuator inaccuracies. A method for testing inaccuracy combinations has already been published by the authors. This paper enhances the capabilities of the method by automatically collecting scenarios from physical vehicle drives that are relevant for further analysis. For such situations, a state trace including all variables of the whole planning and control system is stored together with environment information. The stored data is the input for further analysis. An implementation of this approach is demonstrated using a simulation and a full size vehicle.","PeriodicalId":124818,"journal":{"name":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2015.467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Ensuring safe operation of autonomous vehicles requires testing them including critical combinations of obstacle configurations plus sensor and actuator inaccuracies. A method for testing inaccuracy combinations has already been published by the authors. This paper enhances the capabilities of the method by automatically collecting scenarios from physical vehicle drives that are relevant for further analysis. For such situations, a state trace including all variables of the whole planning and control system is stored together with environment information. The stored data is the input for further analysis. An implementation of this approach is demonstrated using a simulation and a full size vehicle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过分析物理测试驱动器收集仿真场景
确保自动驾驶汽车的安全运行需要对它们进行测试,包括障碍配置的关键组合以及传感器和执行器的不准确性。一种检测不准确组合的方法已经由作者发表。本文通过自动收集与进一步分析相关的物理车辆驾驶场景来增强该方法的能力。在这种情况下,将包含整个规划控制系统所有变量的状态轨迹与环境信息一起存储。存储的数据是进一步分析的输入。通过仿真和全尺寸车辆演示了该方法的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Area Traffic Prediction Using High Definition Maps and LiDAR for Safe Driving Assist ZEM 2 All Project (Zero Emission Mobility to All) Economic Analysis Based on the Interrelationships of the OLEV System Components Intelligent Driver Monitoring Based on Physiological Sensor Signals: Application Using Camera On Identifying Dynamic Intersections in Large Cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1