On-Line Directional Algebraic Reconstruction Technique for Electrical Capacitance Tomography

Ji-hoon Kim, Byoung-Chae Kang, B. Choi, S. Lee, K. Kim
{"title":"On-Line Directional Algebraic Reconstruction Technique for Electrical Capacitance Tomography","authors":"Ji-hoon Kim, Byoung-Chae Kang, B. Choi, S. Lee, K. Kim","doi":"10.1109/ICSENS.2007.355617","DOIUrl":null,"url":null,"abstract":"In general, image reconstruction algorithms for electrical capacitance tomography (ECT) can be classified into iterative and noniterative algorithms. Iterative algorithms produce better quality images however they can only be used off-line due to intensive computational burden. In the context of computational burden, in this paper we propose a fast noniterative image reconstruction algorithm called on-line directional algebraic reconstruction technique (OLDART) which like its predecessor, directional algebraic reconstruction technique (DART), produces the same quality image but reduces the reconstruction time. The reconstruction procedure of the proposed algorithm comprises of two steps. In the first step, a modified weighting matrix is generated off-line, and in the second step, the matrix is used for on-line image reconstruction in the same manner as the sensitivity matrix in the linear back-projection algorithm is used. In order to assess the reconstruction performance, extensive simulation results are provided for the proposed approach.","PeriodicalId":233838,"journal":{"name":"2006 5th IEEE Conference on Sensors","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th IEEE Conference on Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2007.355617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In general, image reconstruction algorithms for electrical capacitance tomography (ECT) can be classified into iterative and noniterative algorithms. Iterative algorithms produce better quality images however they can only be used off-line due to intensive computational burden. In the context of computational burden, in this paper we propose a fast noniterative image reconstruction algorithm called on-line directional algebraic reconstruction technique (OLDART) which like its predecessor, directional algebraic reconstruction technique (DART), produces the same quality image but reduces the reconstruction time. The reconstruction procedure of the proposed algorithm comprises of two steps. In the first step, a modified weighting matrix is generated off-line, and in the second step, the matrix is used for on-line image reconstruction in the same manner as the sensitivity matrix in the linear back-projection algorithm is used. In order to assess the reconstruction performance, extensive simulation results are provided for the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电容层析成像的在线定向代数重构技术
一般来说,电容层析成像(ECT)的图像重建算法可分为迭代算法和非迭代算法。迭代算法可以产生更好的图像质量,但由于计算量大,只能离线使用。在计算量大的背景下,本文提出了一种快速的非迭代图像重建算法,即在线定向代数重建技术(OLDART),它与其前身定向代数重建技术(DART)一样,可以产生相同质量的图像,但减少了重建时间。该算法的重构过程分为两个步骤。首先离线生成修改后的加权矩阵,第二步与线性反投影算法中的灵敏度矩阵相同,将该矩阵用于在线图像重建。为了评估该方法的重建性能,提供了大量的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart microplates: integrated photodiodes for detecting bead-based chemiluminescent reactions Novel Biomolecular Finger Printing with an Active Dual-Band Antenna Biosensor Flexible Multimodal Tactile Sensing System for Object Identification Transferrin Electronic Detector for Iron Disease Diagnostics Staggered Sampling for Energy Efficient Data Collection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1