A neural network based outlier identification and removal scheme

H. Ferdowsi, S. Jagannathan, M. Zawodniok
{"title":"A neural network based outlier identification and removal scheme","authors":"H. Ferdowsi, S. Jagannathan, M. Zawodniok","doi":"10.1109/ICPHM.2013.6621453","DOIUrl":null,"url":null,"abstract":"Identifying and removing the outliers is important in order to make the data more trustworthy and improve the reliability of fault detection, since outliers in the measured data can cause false alarms. An online outlier identification and removal (OIR) scheme, suitable for nonlinear dynamic systems, is proposed in this paper. A neural network (NN) is utilized to estimate the actual outlier-free system states using only the measured system states which involve outliers. Outlier identification is performed online by finding the difference between measured and estimated states and comparing it with its median and standard deviation over a dynamic time window. Furthermore, the neural network weight update law is designed such that the detected outliers will not affect the state estimation. The proposed OIR scheme is then combined with fault diagnosis scheme as a preprocessing unit, in order to improve fault detection performance. A separate model-based fault detection observer is designed which uses the estimated outlier-free states to perform fault diagnosis. Finally a simple linear system is used to verify the scheme in simulations followed by a piston pump test bed study.","PeriodicalId":178906,"journal":{"name":"2013 IEEE Conference on Prognostics and Health Management (PHM)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Prognostics and Health Management (PHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2013.6621453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Identifying and removing the outliers is important in order to make the data more trustworthy and improve the reliability of fault detection, since outliers in the measured data can cause false alarms. An online outlier identification and removal (OIR) scheme, suitable for nonlinear dynamic systems, is proposed in this paper. A neural network (NN) is utilized to estimate the actual outlier-free system states using only the measured system states which involve outliers. Outlier identification is performed online by finding the difference between measured and estimated states and comparing it with its median and standard deviation over a dynamic time window. Furthermore, the neural network weight update law is designed such that the detected outliers will not affect the state estimation. The proposed OIR scheme is then combined with fault diagnosis scheme as a preprocessing unit, in order to improve fault detection performance. A separate model-based fault detection observer is designed which uses the estimated outlier-free states to perform fault diagnosis. Finally a simple linear system is used to verify the scheme in simulations followed by a piston pump test bed study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于神经网络的离群点识别与去除方案
由于测量数据中的异常值可能导致误报,因此为了使数据更可信,提高故障检测的可靠性,识别和去除异常值非常重要。本文提出了一种适用于非线性动态系统的在线异常点识别与去除(OIR)方法。利用神经网络(NN)仅利用测量到的包含离群值的系统状态来估计实际的无离群值系统状态。通过找到测量状态和估计状态之间的差异,并将其与动态时间窗口内的中位数和标准差进行比较,在线进行离群值识别。此外,设计了神经网络权值更新律,使检测到的异常值不影响状态估计。然后将该方法与故障诊断方法结合作为预处理单元,以提高故障检测性能。设计了一个单独的基于模型的故障检测观测器,利用估计的无离群值状态进行故障诊断。最后用一个简单的线性系统进行了仿真验证,并对柱塞泵试验台进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A decentralized fault accommodation scheme for nonlinear interconnected systems A circuit-centric approach to electronic system-level diagnostics and prognostics Predictive maintenance policy optimization by discrimination of marginally distinct signals Data mining based fault isolation with FMEA rank: A case study of APU fault identification Complete parametric estimation of the Weibull model with an optimized inspection interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1