Weakly supervised relevance feedback based on an improved language model

Xinsheng Li, Si Li, Weiran Xu, Guang Chen, Jun Guo
{"title":"Weakly supervised relevance feedback based on an improved language model","authors":"Xinsheng Li, Si Li, Weiran Xu, Guang Chen, Jun Guo","doi":"10.1109/NLPKE.2010.5587859","DOIUrl":null,"url":null,"abstract":"Relevance feedback, which traditionally uses the terms in the relevant documents to enrich the user's initial query, is an effective method for improving retrieval performance. This approach has another problem is that Relevance feedback assumes that most frequent terms in the feedback documents are useful for the retrieval. In fact, the reports of some experiments show that it does not hold in reality many expansion terms identified in traditional approaches are indeed unrelated to the query and harmful to the retrieval. In this paper, we propose to select better and more relevant documents with a clustering algorithm. And then we present an improved Language Model to help us identify the good terms from those relevant documents. Ours experiments on the 2008 TREC collection show that retrieval effectiveness can be much improved when the improved Language Model is used.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Relevance feedback, which traditionally uses the terms in the relevant documents to enrich the user's initial query, is an effective method for improving retrieval performance. This approach has another problem is that Relevance feedback assumes that most frequent terms in the feedback documents are useful for the retrieval. In fact, the reports of some experiments show that it does not hold in reality many expansion terms identified in traditional approaches are indeed unrelated to the query and harmful to the retrieval. In this paper, we propose to select better and more relevant documents with a clustering algorithm. And then we present an improved Language Model to help us identify the good terms from those relevant documents. Ours experiments on the 2008 TREC collection show that retrieval effectiveness can be much improved when the improved Language Model is used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进语言模型的弱监督相关反馈
相关反馈是一种提高检索性能的有效方法,传统上使用相关文档中的术语来丰富用户的初始查询。这种方法的另一个问题是相关性反馈假设反馈文档中最常见的术语对检索有用。事实上,一些实验报告表明,它在现实中并不成立,许多在传统方法中识别的扩展术语确实与查询无关,并且对检索有害。在本文中,我们提出了一种聚类算法来选择更好和更相关的文档。然后,我们提出了一个改进的语言模型,以帮助我们从这些相关文档中识别出好的术语。我们在2008年的TREC集合上的实验表明,使用改进的语言模型可以大大提高检索效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dashboard: An integration and testing platform based on backboard architecture for NLP applications Chinese semantic role labeling based on semantic knowledge Transitivity in semantic relation learning Wisdom media “CAIWA Channel” based on natural language interface agent A new cascade algorithm based on CRFs for recognizing Chinese verb-object collocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1