Techno-Economic Evaluation of the Effect of Impurities on the Performance of Supercritical CO2 Cycles

L. Vesely, Václav Dostál, J. Kapat, Subith S. Vasu, Scott Martin
{"title":"Techno-Economic Evaluation of the Effect of Impurities on the Performance of Supercritical CO2 Cycles","authors":"L. Vesely, Václav Dostál, J. Kapat, Subith S. Vasu, Scott Martin","doi":"10.1115/gt2019-90704","DOIUrl":null,"url":null,"abstract":"\n The development of new power generation technologies are necessary to meet growing energy demands and emission requirements. The supercritical carbon dioxide (S-CO2) cycle is one such technology; it has relatively high efficiency, potential to enable 100% carbon capture, and compact components. The S-CO2 cycle is adaptable to almost all of the existing power producing methods including fossil, solar, and nuclear technologies. However, it is known that the best combination of the operating conditions, equipment, working fluid and cycle layout determine the maximum achievable efficiency of a cycle. Impurities in the cycle have some effect on the S-CO2 power cycle as presented in our previous work. The effect of impurities is positive or negative and affects all components. The effect of mixture compositions on the techno-economic evaluation is important information for the global understanding of the effect of mixtures on the S-CO2 power cycle. This paper focuses on the techno-economic evaluation of a hypothetical power plant with the S-CO2 power cycle. Two cases are considered for techno-economic evaluation. The difference between these cases is in the heat source and the associated heat exchanger (PCHE and shell and tube heat exchanger). Cost estimation was performed for three indicators (the levelized cost of electricity, the internal rate of return, and the net present value), which are important for economic viability and the rate of return of the project.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-90704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The development of new power generation technologies are necessary to meet growing energy demands and emission requirements. The supercritical carbon dioxide (S-CO2) cycle is one such technology; it has relatively high efficiency, potential to enable 100% carbon capture, and compact components. The S-CO2 cycle is adaptable to almost all of the existing power producing methods including fossil, solar, and nuclear technologies. However, it is known that the best combination of the operating conditions, equipment, working fluid and cycle layout determine the maximum achievable efficiency of a cycle. Impurities in the cycle have some effect on the S-CO2 power cycle as presented in our previous work. The effect of impurities is positive or negative and affects all components. The effect of mixture compositions on the techno-economic evaluation is important information for the global understanding of the effect of mixtures on the S-CO2 power cycle. This paper focuses on the techno-economic evaluation of a hypothetical power plant with the S-CO2 power cycle. Two cases are considered for techno-economic evaluation. The difference between these cases is in the heat source and the associated heat exchanger (PCHE and shell and tube heat exchanger). Cost estimation was performed for three indicators (the levelized cost of electricity, the internal rate of return, and the net present value), which are important for economic viability and the rate of return of the project.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
杂质对超临界CO2循环性能影响的技术经济评价
为了满足日益增长的能源需求和排放要求,必须开发新的发电技术。超临界二氧化碳(S-CO2)循环就是这样一种技术;它具有相对较高的效率,实现100%碳捕获的潜力,以及紧凑的组件。S-CO2循环适用于几乎所有现有的发电方法,包括化石燃料、太阳能和核技术。然而,众所周知,操作条件、设备、工作流体和循环布局的最佳组合决定了一个循环的最大可实现效率。循环中的杂质对S-CO2动力循环有一定的影响,如我们之前的工作所述。杂质的作用有正负两种,影响所有成分。混合组分对技术经济评价的影响是全面了解混合组分对S-CO2动力循环影响的重要信息。本文对一个假设的S-CO2动力循环电厂进行了技术经济评价。考虑了两种情况进行技术经济评价。这些情况之间的区别在于热源和相关的热交换器(PCHE和壳管式热交换器)。对三个指标(电力平准化成本、内部收益率和净现值)进行了成本估算,这三个指标对项目的经济可行性和收益率很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Departure Functions to Estimate Deviation of a Real Gas From the Ideal Gas Model Design Considerations for High Pressure Boil-Off Gas (BOG) Centrifugal Compressors With Synchronous Motor Drives in LNG Liquefaction Plants An Overview of Initial Operational Experience With the Closed-Loop sCO2 Test Facility at Cranfield University Wet Gas Compressor Modeling and Performance Scaling The Effect of Blade Deflections on the Torsional Dynamic of a Wind Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1