Demonstration abstract: CrowdMeter — Predicting performance of crowd-sensing applications using emulations

Manoj R. Rege, V. Handziski, A. Wolisz
{"title":"Demonstration abstract: CrowdMeter — Predicting performance of crowd-sensing applications using emulations","authors":"Manoj R. Rege, V. Handziski, A. Wolisz","doi":"10.1109/IPSN.2014.6846778","DOIUrl":null,"url":null,"abstract":"Predicting performance of crowd-sensing applications at large scale, in the pre-deployment phase, represents a significant challenge for developers. We demonstrate a solution to this problem in the form of a cloud-based emulation platform called CrowdMeter. Our platform emulates mobile devices and access network links, models human factors in crowd-sensing, and leverages virtualization through cloud infrastructure-as-service resources to model large scale crowd-sensing. In this demo we exhibit the capabilities of CrowdMeter by deploying VideoQuest, a simple crowd-sensing application, on hundreds of emulated mobile devices, and by measuring its performance.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2014.6846778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Predicting performance of crowd-sensing applications at large scale, in the pre-deployment phase, represents a significant challenge for developers. We demonstrate a solution to this problem in the form of a cloud-based emulation platform called CrowdMeter. Our platform emulates mobile devices and access network links, models human factors in crowd-sensing, and leverages virtualization through cloud infrastructure-as-service resources to model large scale crowd-sensing. In this demo we exhibit the capabilities of CrowdMeter by deploying VideoQuest, a simple crowd-sensing application, on hundreds of emulated mobile devices, and by measuring its performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
演示摘要:CrowdMeter -使用仿真预测人群传感应用程序的性能
在预部署阶段,预测大规模人群传感应用程序的性能对开发人员来说是一个重大挑战。我们以一个名为CrowdMeter的基于云的仿真平台的形式展示了这个问题的解决方案。我们的平台模拟移动设备和接入网络链路,模拟人群感知中的人为因素,并通过云基础设施即服务资源利用虚拟化来模拟大规模的人群感知。在这个演示中,我们通过在数百个模拟移动设备上部署VideoQuest(一个简单的人群感应应用程序)并测量其性能来展示CrowdMeter的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal sensor placement and measurement of wind for water quality studies in urban reservoirs One meter to find them all-water network leak localization using a single flow meter Demonstration abstract: Simply RIOT — Teaching and experimental research in the Internet of Things Demonstration abstract: Submetering by synthesizing side-channel sensor streams Visual light landmarks for mobile devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1