Artificial neural network based hourly load forecasting for decentralized load management

J. K. Mandal, A. K. Sinha
{"title":"Artificial neural network based hourly load forecasting for decentralized load management","authors":"J. K. Mandal, A. K. Sinha","doi":"10.1109/EMPD.1995.500701","DOIUrl":null,"url":null,"abstract":"Decentralised load management is an essential part of the power system operation. Forecasting load demand at the substation level is generally more difficult and less accurate compared to forecasting total system load demand. In this paper, multi-layered feedforward (MLFF) neural network is used to predict the bus-load demand at the substation level. The MLFF network is trained using the backpropagation (BP) algorithm with an adaptive learning technique. The algorithm is tested for two systems having different load patterns.","PeriodicalId":447674,"journal":{"name":"Proceedings 1995 International Conference on Energy Management and Power Delivery EMPD '95","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 International Conference on Energy Management and Power Delivery EMPD '95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMPD.1995.500701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Decentralised load management is an essential part of the power system operation. Forecasting load demand at the substation level is generally more difficult and less accurate compared to forecasting total system load demand. In this paper, multi-layered feedforward (MLFF) neural network is used to predict the bus-load demand at the substation level. The MLFF network is trained using the backpropagation (BP) algorithm with an adaptive learning technique. The algorithm is tested for two systems having different load patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式负荷管理中基于人工神经网络的小时负荷预测
分散负荷管理是电力系统运行的重要组成部分。与预测整个系统的负荷需求相比,预测变电站一级的负荷需求通常更加困难和不准确。本文采用多层前馈神经网络对变电站级母线负荷需求进行预测。采用自适应学习技术,采用反向传播(BP)算法对MLFF网络进行训练。该算法在两个不同负载模式的系统上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer studies of high-voltage motor switching transients A study on the fault indentification of underground cable using neural networks The technical efficiency of developing country electricity systems A method for cost benefit analysis of distribution automation Statistical standards and pollution estimation of harmonics in a power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1