Application of Microstencil Lithography on Polymer Surfaces for Microfluidic Systems with Integrated Microelectrodes

N. Takano, L. Doeswijk, M. van den Boogaart, J. Brugger
{"title":"Application of Microstencil Lithography on Polymer Surfaces for Microfluidic Systems with Integrated Microelectrodes","authors":"N. Takano, L. Doeswijk, M. van den Boogaart, J. Brugger","doi":"10.1109/MMB.2006.251511","DOIUrl":null,"url":null,"abstract":"Microstencil lithography, a resistless, single-step direct vacuum patterning method, is one of promising methods for metal micropattern definition on polymer substrates that are not suitable for conventional photolithography. We propose to apply microstencil lithography to fabricate microelectrodes on flat and pre-structured polymer substrates which form parts of microfluidic systems with incorporated microelectrodes. However, microstencil lithography is accompanied by two main issues when considered as a low-cost, reproducible alternative to standard photolithography on polymer substrates: clogging and blurring. The clogging of stencil apertures induced by metal evaporation was checked in detail, and it was determined that approximately 50 % of the thickness of the evaporated metals was deposited at the side walls of the stencil apertures. The influence of gap presence on the deposited structures was also analyzed experimentally, and we quantified the pattern blurring","PeriodicalId":170356,"journal":{"name":"2006 International Conference on Microtechnologies in Medicine and Biology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Microtechnologies in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMB.2006.251511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Microstencil lithography, a resistless, single-step direct vacuum patterning method, is one of promising methods for metal micropattern definition on polymer substrates that are not suitable for conventional photolithography. We propose to apply microstencil lithography to fabricate microelectrodes on flat and pre-structured polymer substrates which form parts of microfluidic systems with incorporated microelectrodes. However, microstencil lithography is accompanied by two main issues when considered as a low-cost, reproducible alternative to standard photolithography on polymer substrates: clogging and blurring. The clogging of stencil apertures induced by metal evaporation was checked in detail, and it was determined that approximately 50 % of the thickness of the evaporated metals was deposited at the side walls of the stencil apertures. The influence of gap presence on the deposited structures was also analyzed experimentally, and we quantified the pattern blurring
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微模板光刻技术在集成微电极微流控系统聚合物表面的应用
微模版技术是一种无阻力、单步直接真空制版技术,是传统光刻技术无法在聚合物基板上显示金属微图案的一种很有前途的方法。我们建议应用微模板光刻技术在平面和预结构聚合物衬底上制造微电极,这些衬底构成了集成微电极的微流控系统的一部分。然而,当被认为是低成本、可复制的聚合物基板标准光刻的替代品时,微模板光刻伴随着两个主要问题:堵塞和模糊。对金属蒸发引起的孔堵塞进行了详细的检查,并确定蒸发金属厚度的约50%沉积在孔的侧壁上。实验分析了间隙的存在对沉积结构的影响,并量化了模式模糊
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PDF Not Yet Available In IEEE Xplore Two-Compartments Microbioreactor with Integrated Magnetic Stirrer Pump for Measurement of Transmembrane Transport of Caco-2 Cells 3D Microelectrodes for Coulometric Screening in Microfabricated Lab-on-a-Chip Devices A Silicon-Based Single-Cell Electroporation Microchip for Gene Transfer Adsorption-induced inactivation of heavy meromyosin on polymer surfaces imposes effective drag force on sliding actin filaments in vitro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1