A Primal-Dual Interior-Point Algorithm Based on a Kernel Function with a New Barrier Term

Safa Guerdouh, W. Chikouche, Imene Touil
{"title":"A Primal-Dual Interior-Point Algorithm Based on a Kernel Function with a New Barrier Term","authors":"Safa Guerdouh, W. Chikouche, Imene Touil","doi":"10.19139/soic-2310-5070-1381","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a path-following interior-point method (IPM) for solving linear optimization (LO) problems based on a new kernel function (KF). The latter differs from other KFs in having an exponential-hyperbolic barrier term that belongs to the hyperbolic type, recently developed by I. Touil and W. Chikouche \\cite{filomat2021,acta2022}. The complexity analysis for large-update primal-dual IPMs based on this KF yields an $\\mathcal{O}\\left( \\sqrt{n}\\log^2n\\log \\frac{n}{\\epsilon }\\right)$ iteration bound which improves the classical iteration bound. For small-update methods, the proposed algorithm enjoys the favorable iteration bound, namely, $\\mathcal{O}\\left( \\sqrt{n}\\log \\frac{n}{\\epsilon }\\right)$. We back up these results with some preliminary numerical tests which show that our algorithm outperformed other algorithms with better theoretical convergence complexity. To our knowledge, this is the first feasible primal-dual interior-point algorithm based on an exponential-hyperbolic KF.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a path-following interior-point method (IPM) for solving linear optimization (LO) problems based on a new kernel function (KF). The latter differs from other KFs in having an exponential-hyperbolic barrier term that belongs to the hyperbolic type, recently developed by I. Touil and W. Chikouche \cite{filomat2021,acta2022}. The complexity analysis for large-update primal-dual IPMs based on this KF yields an $\mathcal{O}\left( \sqrt{n}\log^2n\log \frac{n}{\epsilon }\right)$ iteration bound which improves the classical iteration bound. For small-update methods, the proposed algorithm enjoys the favorable iteration bound, namely, $\mathcal{O}\left( \sqrt{n}\log \frac{n}{\epsilon }\right)$. We back up these results with some preliminary numerical tests which show that our algorithm outperformed other algorithms with better theoretical convergence complexity. To our knowledge, this is the first feasible primal-dual interior-point algorithm based on an exponential-hyperbolic KF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于新障碍项核函数的原对偶内点算法
本文提出了一种基于新核函数(KF)的路径跟踪内点法(IPM)来求解线性优化问题。后者与其他KFs的不同之处在于,它有一个指数双曲势垒项,属于双曲型,最近由I. Touil和W. Chikouche \cite{filomat2021,acta2022}开发。基于该KF对大更新原始对偶ipm进行复杂度分析,得到了改进经典迭代界的$\mathcal{O}\left( \sqrt{n}\log^2n\log \frac{n}{\epsilon }\right)$迭代界。对于小更新方法,本文算法具有良好的迭代界,即$\mathcal{O}\left( \sqrt{n}\log \frac{n}{\epsilon }\right)$。我们用一些初步的数值测试来支持这些结果,表明我们的算法优于其他具有更好理论收敛复杂度的算法。据我们所知,这是第一个可行的基于指数双曲KF的原对偶内点算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-depth Analysis of von Mises Distribution Models: Understanding Theory, Applications, and Future Directions Bayesian and Non-Bayesian Estimation for The Parameter of Inverted Topp-Leone Distribution Based on Progressive Type I Censoring Comparative Evaluation of Imbalanced Data Management Techniques for Solving Classification Problems on Imbalanced Datasets An Algorithm for Solving Quadratic Programming Problems with an M-matrix An Effective Randomized Algorithm for Hyperspectral Image Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1