Power System Sectionalizing Optimization Using Genetic Algorithm

A. Gavrilova, A. Khalyasmaa
{"title":"Power System Sectionalizing Optimization Using Genetic Algorithm","authors":"A. Gavrilova, A. Khalyasmaa","doi":"10.1109/ELMA.2019.8771663","DOIUrl":null,"url":null,"abstract":"This paper proposes the algorithm for searching the optimal configuration of the power network, taking into account short-circuit currents and losses, using the genetic algorithm. The proposed method allows finding the optimal configuration of the power network effectively, for a relatively small number of iterations (significantly less than with a full search of all options). The influence of the population size on the number of runs to calculate the mode and short-circuit currents is analyzed. Standard IEEE schemes were used as test schemes, with 14 nodes, 20 branches and 118 nodes, 186 branches. The modeling was performed in the MATLAB software environment and the package of procedures for calculating the Matpower 6.0 mode.","PeriodicalId":304248,"journal":{"name":"2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA)","volume":"02 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMA.2019.8771663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes the algorithm for searching the optimal configuration of the power network, taking into account short-circuit currents and losses, using the genetic algorithm. The proposed method allows finding the optimal configuration of the power network effectively, for a relatively small number of iterations (significantly less than with a full search of all options). The influence of the population size on the number of runs to calculate the mode and short-circuit currents is analyzed. Standard IEEE schemes were used as test schemes, with 14 nodes, 20 branches and 118 nodes, 186 branches. The modeling was performed in the MATLAB software environment and the package of procedures for calculating the Matpower 6.0 mode.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的电力系统分段优化
本文提出了利用遗传算法在考虑短路电流和损耗的情况下搜索电网最优配置的算法。所提出的方法可以有效地找到电网的最佳配置,迭代次数相对较少(明显少于对所有选项进行完全搜索)。分析了种群大小对计算模式电流和短路电流的运行次数的影响。测试方案采用IEEE标准方案,共设14个节点20个支路和118个节点186个支路。建模在MATLAB软件环境下进行,采用Matpower 6.0模式计算程序包进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ship’s Induction Motors Fault Diagnosis Comparative Analysis of Content-Based Image Retrieval Systems Implications of Residential Battery Charge and Discharge Rates on Self-consumption and Peak Power Exchange Modelling and Control of Bidirectional Buck-Boost Converter for Electric Vehicles Applications Computer Modeling and Experimental Verification of a Hybrid Electromagnetic System with Magnetic Flux Modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1