Chong Li, Ying Feng, H. Yoong, Mingwei Liang, J. Chen
{"title":"Working Properties of Compliant Actuators Based on Magnetorheological Elastomer","authors":"Chong Li, Ying Feng, H. Yoong, Mingwei Liang, J. Chen","doi":"10.1109/ICARM52023.2021.9536115","DOIUrl":null,"url":null,"abstract":"Novel designs and control methods have been addressed in areas from sensing technology to robotics with the development of smart materials and compliant actuating components, which are showing some good actuating performances compared with the traditional actuating components utilizing air valves, hydraulic pumps and electro-motors. In this paper, the working properties of a class of compliant actuators utilizing liquid alloy conductors, and magnetorheological elastomers (MREs) are discussed. The magnetorheological (MR) effect in the complaint MRE actuators are analyzed so the working properties between input (voltage)and the output (displacement) can be modeled analytically.","PeriodicalId":367307,"journal":{"name":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM52023.2021.9536115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Novel designs and control methods have been addressed in areas from sensing technology to robotics with the development of smart materials and compliant actuating components, which are showing some good actuating performances compared with the traditional actuating components utilizing air valves, hydraulic pumps and electro-motors. In this paper, the working properties of a class of compliant actuators utilizing liquid alloy conductors, and magnetorheological elastomers (MREs) are discussed. The magnetorheological (MR) effect in the complaint MRE actuators are analyzed so the working properties between input (voltage)and the output (displacement) can be modeled analytically.