Cluster Head and Optimal Path Slection Using K-GA and T-FA Algorithms for Wireless Sensor Networks

M. Ram, Kuda Nageswara Rao, S. J. Basha, S. S. Reddy
{"title":"Cluster Head and Optimal Path Slection Using K-GA and T-FA Algorithms for Wireless Sensor Networks","authors":"M. Ram, Kuda Nageswara Rao, S. J. Basha, S. S. Reddy","doi":"10.1109/ICECA49313.2020.9297535","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Network (WSN) is a system with huge number of sensors connected to one another by placing them in a specific area. Different issues with WSN includes (but not limited to) the coverage, network lifetime and aggregation. The lifetime of a network can be improved by the clustering with the reduction of energy consumption. Clustering will group the related type of sensors into a single place with a head sensor node for message aggregation and transmission between other nodes and Base Station (BS). The cluster head (CH) consume more energy, when aggregating and transmitting the data. With the suitable identification of CH, there will be a reduction in the consumption of energy and improves the life of Wireless Sensor Network to be more. This paper modifies the meta-heuristic algorithms for improving the network lifetime by choosing appropriate cluster head and optimal path. K-Genetic Algorithm (K-GA) is proposed for efficient cluster head selection. Initially, the sensors are clustered using k-means clustering based on their location and Genetic Algorithm has been applied to detect the best cluster head. For secure optimal routing, Trust based Firefly (T-FA) path selection algorithm is used. Extensive simulations are conducted on various circumstances. The results obtained on the simulation indicates that the proposed K-GA helps in determining the optimized head of the cluster and T-FA discovers the optimal paths which enriches the life of the network by reducing end-to-end delay compared to other techniques.","PeriodicalId":297285,"journal":{"name":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","volume":"1310 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA49313.2020.9297535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Wireless Sensor Network (WSN) is a system with huge number of sensors connected to one another by placing them in a specific area. Different issues with WSN includes (but not limited to) the coverage, network lifetime and aggregation. The lifetime of a network can be improved by the clustering with the reduction of energy consumption. Clustering will group the related type of sensors into a single place with a head sensor node for message aggregation and transmission between other nodes and Base Station (BS). The cluster head (CH) consume more energy, when aggregating and transmitting the data. With the suitable identification of CH, there will be a reduction in the consumption of energy and improves the life of Wireless Sensor Network to be more. This paper modifies the meta-heuristic algorithms for improving the network lifetime by choosing appropriate cluster head and optimal path. K-Genetic Algorithm (K-GA) is proposed for efficient cluster head selection. Initially, the sensors are clustered using k-means clustering based on their location and Genetic Algorithm has been applied to detect the best cluster head. For secure optimal routing, Trust based Firefly (T-FA) path selection algorithm is used. Extensive simulations are conducted on various circumstances. The results obtained on the simulation indicates that the proposed K-GA helps in determining the optimized head of the cluster and T-FA discovers the optimal paths which enriches the life of the network by reducing end-to-end delay compared to other techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于K-GA和T-FA算法的无线传感器网络簇头和最优路径选择
无线传感器网络(WSN)是一个由大量传感器组成的系统,通过将它们放置在特定区域而相互连接。WSN的不同问题包括(但不限于)覆盖范围、网络生命周期和聚合。通过聚类可以提高网络的生命周期,同时降低能耗。集群将相关类型的传感器分组到一个具有头部传感器节点的地方,用于其他节点和基站(BS)之间的消息聚合和传输。在聚合和传输数据时,簇头(CH)消耗更多的能量。通过对CH的适当识别,将大大降低无线传感器网络的能耗,提高无线传感器网络的使用寿命。本文改进了元启发式算法,通过选择合适的簇头和最优路径来提高网络生存时间。为了有效地选择簇头,提出了k -遗传算法(K-GA)。首先,根据传感器的位置采用k-means聚类方法对其进行聚类,并应用遗传算法检测最佳簇头。为了实现安全最优路由,采用了基于信任的萤火虫(Trust based Firefly, T-FA)选路算法。在各种情况下进行了大量的模拟。仿真结果表明,与其他技术相比,K-GA有助于确定最优簇头,T-FA发现最优路径,通过减少端到端延迟,丰富了网络的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Prosodic features for the degree of emotions of an Assamese Emotional Speech MCU system based on IEC61508 for Autonomous Functional safety platform Comparative analysis of facial recognition models using video for real time attendance monitoring system Analysis of using IoT Sensors in Healthcare units Supported by Cloud Computing Human Friendly Smart Trolley with Automatic Billing System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1