Dynamically reconfigurable metasurfaces (Presentation Recording)

P. Iyer, N. Butakov, J. Schuller
{"title":"Dynamically reconfigurable metasurfaces (Presentation Recording)","authors":"P. Iyer, N. Butakov, J. Schuller","doi":"10.1117/12.2187811","DOIUrl":null,"url":null,"abstract":"Recently, the use of phased array metasurfaces to control the phase and amplitude of electromagnetic waves at subwavelength dimensions have led to large number of devices ranging from flat optical elements to holographic projections. Here we analytically (and numerically using FDTD techniques) develop a design principle to form reconfigurable metasurfaces that control the phase of transmitted beam between 0 and 2π in a lossless manner. For a linearly polarized plane wave incident on a sub-wavelength array of dielectric resonators, we engineer the size of the individual resonators and the array periodicity such that the fundamental Electric and Magnetic dipole resonances of the device cross each other. This mode crossing caused by coupling of individual resonator modes with the surface lattice resonances, constructively interferes with the incident plane wave enabling us to form lossless metasurfaces. By optically pumping charge carriers into the resonators, we can tune the refractive index of the individual resonators leading to arbitrary control over the phase of the transmitted beam between 0 and 2π with less than 3dB loss in intensity. Further, we extend these strategies by redesigning the resonator elements by forming core-shell (metal-dielectric) resonators to cause the resonance matching within each resonator. This enables the mode crossing to be independent of the periodicity of the resonator elements while preserving the arbitrary control over the phase through charge carrier modulation. Such metasurfaces with spectrally overlapping electric and magnetic dipole modes may form the basis for a range of metadevices with unprecedented control over the Electromagnetic wave front.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE NanoScience + Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2187811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the use of phased array metasurfaces to control the phase and amplitude of electromagnetic waves at subwavelength dimensions have led to large number of devices ranging from flat optical elements to holographic projections. Here we analytically (and numerically using FDTD techniques) develop a design principle to form reconfigurable metasurfaces that control the phase of transmitted beam between 0 and 2π in a lossless manner. For a linearly polarized plane wave incident on a sub-wavelength array of dielectric resonators, we engineer the size of the individual resonators and the array periodicity such that the fundamental Electric and Magnetic dipole resonances of the device cross each other. This mode crossing caused by coupling of individual resonator modes with the surface lattice resonances, constructively interferes with the incident plane wave enabling us to form lossless metasurfaces. By optically pumping charge carriers into the resonators, we can tune the refractive index of the individual resonators leading to arbitrary control over the phase of the transmitted beam between 0 and 2π with less than 3dB loss in intensity. Further, we extend these strategies by redesigning the resonator elements by forming core-shell (metal-dielectric) resonators to cause the resonance matching within each resonator. This enables the mode crossing to be independent of the periodicity of the resonator elements while preserving the arbitrary control over the phase through charge carrier modulation. Such metasurfaces with spectrally overlapping electric and magnetic dipole modes may form the basis for a range of metadevices with unprecedented control over the Electromagnetic wave front.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态可重构的元表面(表示记录)
近年来,利用相控阵超表面在亚波长尺度上控制电磁波的相位和振幅,导致了从平面光学元件到全息投影等大量器件的出现。在这里,我们分析(和数值使用时域有限差分技术)开发了一种设计原则,以形成可重构的元表面,以无损的方式控制发射光束在0和2π之间的相位。对于入射到介电谐振器亚波长阵列上的线极化平面波,我们设计了单个谐振器的尺寸和阵列的周期性,使器件的基本电偶极子和磁偶极子共振相互交叉。这种模式交叉是由单个谐振腔模式与表面晶格共振的耦合引起的,它对入射平面波产生建设性干涉,使我们能够形成无损的超表面。通过光泵送载流子到谐振腔中,我们可以调整单个谐振腔的折射率,从而在0到2π之间任意控制传输光束的相位,并且强度损失小于3dB。进一步,我们扩展了这些策略,通过形成核-壳(金属-介电)谐振器来重新设计谐振器元件,从而使每个谐振器内的谐振匹配。这使得模式交叉与谐振腔元件的周期性无关,同时通过电荷载流子调制保持对相位的任意控制。这种具有频谱重叠的电偶极子和磁偶极子模式的超表面可能构成一系列对电磁波前具有前所未有控制的元器件的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sculpting Waves (Presentation Recording) Exploring surface plasmon-polariton resonance (SPR) in an interferometer configuration Spin-orbit torques in magnetic bilayers (Presentation Recording) Anomalous and planar Righi-Leduc effects measured in ferromagnetic YIG and NiFe (Presentation Recording) Utilizing homogenous FRET to extend molecular photonic wires beyond 30 nm (Presentation Recording)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1