Minimum error entropy criterion-based randomised autoencoder

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Computation and Systems Pub Date : 2021-08-02 DOI:10.1049/ccs2.12030
Rongzhi Ma, Tianlei Wang, Jiuwen Cao, Fang Dong
{"title":"Minimum error entropy criterion-based randomised autoencoder","authors":"Rongzhi Ma,&nbsp;Tianlei Wang,&nbsp;Jiuwen Cao,&nbsp;Fang Dong","doi":"10.1049/ccs2.12030","DOIUrl":null,"url":null,"abstract":"<p>The extreme learning machine-based autoencoder (ELM-AE) has attracted a lot of attention due to its fast learning speed and promising representation capability. However, the existing ELM-AE algorithms only reconstruct the original input and generally ignore the probability distribution of the data. The minimum error entropy (MEE), as an optimal criterion considering the distribution statistics of the data, is robust in handling non-linear systems and non-Gaussian noises. The MEE is equivalent to the minimisation of the Kullback–Leibaler divergence. Inspired by these advantages, a novel randomised AE is proposed by adopting the MEE criterion as the loss function in the ELM-AE (in short, the MEE-RAE) in this study. Instead of solving the output weight by the Moore–Penrose generalised inverse, the optimal output weight is obtained by the fixed-point iteration method. Further, a quantised MEE (QMEE) is applied to reduce the computational complexity of. Simulations have shown that the QMEE-RAE not only achieves superior generalisation performance but is also more robust to non-Gaussian noises than the ELM-AE.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12030","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

The extreme learning machine-based autoencoder (ELM-AE) has attracted a lot of attention due to its fast learning speed and promising representation capability. However, the existing ELM-AE algorithms only reconstruct the original input and generally ignore the probability distribution of the data. The minimum error entropy (MEE), as an optimal criterion considering the distribution statistics of the data, is robust in handling non-linear systems and non-Gaussian noises. The MEE is equivalent to the minimisation of the Kullback–Leibaler divergence. Inspired by these advantages, a novel randomised AE is proposed by adopting the MEE criterion as the loss function in the ELM-AE (in short, the MEE-RAE) in this study. Instead of solving the output weight by the Moore–Penrose generalised inverse, the optimal output weight is obtained by the fixed-point iteration method. Further, a quantised MEE (QMEE) is applied to reduce the computational complexity of. Simulations have shown that the QMEE-RAE not only achieves superior generalisation performance but is also more robust to non-Gaussian noises than the ELM-AE.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最小误差熵准则的随机自编码器
基于极限学习机的自编码器(ELM-AE)以其快速的学习速度和极具前景的表示能力而备受关注。然而,现有的ELM-AE算法只对原始输入进行重构,一般忽略了数据的概率分布。最小误差熵作为考虑数据分布统计量的最优准则,在处理非线性系统和非高斯噪声时具有鲁棒性。MEE相当于Kullback-Leibaler散度的最小化。受这些优点的启发,本研究采用MEE准则作为ELM-AE(简称MEE- rae)中的损失函数,提出了一种新的随机声发射方法。采用不动点迭代法求解输出权值,而不是采用Moore-Penrose广义逆法求解输出权值。在此基础上,提出了一种量子化MEE (QMEE)方法来降低模型的计算复杂度。仿真结果表明,与ELM-AE相比,QMEE-RAE不仅具有更好的泛化性能,而且对非高斯噪声具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
期刊最新文献
EF-CorrCA: A multi-modal EEG-fNIRS subject independent model to assess speech quality on brain activity using correlated component analysis Detection of autism spectrum disorder using multi-scale enhanced graph convolutional network Evolving usability heuristics for visualising Augmented Reality/Mixed Reality applications using cognitive model of information processing and fuzzy analytical hierarchy process Emotion classification with multi-modal physiological signals using multi-attention-based neural network Optimisation of deep neural network model using Reptile meta learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1