Neural networks and nonparametric regression

V. Cherkassky
{"title":"Neural networks and nonparametric regression","authors":"V. Cherkassky","doi":"10.1109/NNSP.1992.253661","DOIUrl":null,"url":null,"abstract":"The problem of estimating an unknown function from a finite number of noisy data points is a problem of fundamental importance for many applications in signal processing, machine vision, pattern recognition, and process control. Recently, several new computational techniques for nonparametric regression have been proposed by statisticians and by researchers in artificial neural networks. The author presents a critical survey and a common taxonomy of statistical and neural network methods for regression. Global parametric methods, piecewise parametric or locally parametric methods, and adaptive computation methods are considered.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The problem of estimating an unknown function from a finite number of noisy data points is a problem of fundamental importance for many applications in signal processing, machine vision, pattern recognition, and process control. Recently, several new computational techniques for nonparametric regression have been proposed by statisticians and by researchers in artificial neural networks. The author presents a critical survey and a common taxonomy of statistical and neural network methods for regression. Global parametric methods, piecewise parametric or locally parametric methods, and adaptive computation methods are considered.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络与非参数回归
从有限数量的噪声数据点中估计未知函数的问题对于信号处理,机器视觉,模式识别和过程控制中的许多应用都是至关重要的问题。近年来,统计学家和人工神经网络研究人员提出了几种新的非参数回归计算技术。作者提出了一个重要的调查和统计和神经网络回归方法的共同分类。考虑了全局参数方法、分段参数方法或局部参数方法以及自适应计算方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete neural networks and fingerprint identification A fast simulator for neural networks on DSPs or FPGAs Hierarchical perceptron (HiPer) networks for signal/image classifications Adaptive decision-feedback equalizer using forward-only counterpropagation networks for Rayleigh fading channels An efficient model for systems with complex responses (neural network architecture for nonlinear filtering)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1