Geeks and guests: Estimating player’s level of experience from board game behaviors

Feyisayo Olalere, Metehan Doyran, R. Poppe, A. A. Salah
{"title":"Geeks and guests: Estimating player’s level of experience from board game behaviors","authors":"Feyisayo Olalere, Metehan Doyran, R. Poppe, A. A. Salah","doi":"10.1109/WACVW52041.2021.00007","DOIUrl":null,"url":null,"abstract":"Board games have become promising tools for observing and studying social behaviors in multi-person settings. While traditional methods such as self-report questionnaires are used to analyze game-induced behaviors, there is a growing need to automate such analyses. In this paper, we focus on estimating the levels of board game experience by analyzing a player’s confidence and anxiety from visual cues. We use a board game setting to induce relevant interactions, and investigate facial expressions during critical game events. For our analysis, we annotated the critical game events in a multiplayer cooperative board game, using the publicly available MUMBAI board game corpus. Using off-the-shelf tools, we encoded facial behavior in dyadic interactions and built classifiers to predict each player’s level of experience. Our results show that considering the experience level of both parties involved in the interaction simultaneously improves the prediction results.","PeriodicalId":313062,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","volume":"105 19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW52041.2021.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Board games have become promising tools for observing and studying social behaviors in multi-person settings. While traditional methods such as self-report questionnaires are used to analyze game-induced behaviors, there is a growing need to automate such analyses. In this paper, we focus on estimating the levels of board game experience by analyzing a player’s confidence and anxiety from visual cues. We use a board game setting to induce relevant interactions, and investigate facial expressions during critical game events. For our analysis, we annotated the critical game events in a multiplayer cooperative board game, using the publicly available MUMBAI board game corpus. Using off-the-shelf tools, we encoded facial behavior in dyadic interactions and built classifiers to predict each player’s level of experience. Our results show that considering the experience level of both parties involved in the interaction simultaneously improves the prediction results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极客和客人:从桌游行为中评估玩家的体验水平
桌游已经成为观察和研究多人环境下社会行为的有效工具。虽然自我报告问卷等传统方法被用于分析游戏诱发行为,但越来越多的人需要自动化这种分析。在本文中,我们主要通过分析玩家的自信和视觉线索来评估桌面游戏体验水平。我们使用桌面游戏设置来诱导相关互动,并在关键游戏事件中研究面部表情。在我们的分析中,我们使用公开的孟买桌游语料库注释了多人合作桌游中的关键游戏事件。使用现成的工具,我们在二元交互中编码面部行为,并构建分类器来预测每个玩家的体验水平。我们的研究结果表明,同时考虑交互双方的经验水平可以改善预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Virtual 3D City Generation for Synthetic Data Collection Facial Expression Neutralization With StoicNet Explainable Fingerprint ROI Segmentation Using Monte Carlo Dropout An Explainable Attention-Guided Iris Presentation Attack Detector Geeks and guests: Estimating player’s level of experience from board game behaviors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1