Improving Identification of System-Directed Speech Utterances by Deep Learning of ASR-Based Word Embeddings and Confidence Metrics

Vilayphone Vilaysouk, Amr H. Nour-Eldin, Dermot Connolly
{"title":"Improving Identification of System-Directed Speech Utterances by Deep Learning of ASR-Based Word Embeddings and Confidence Metrics","authors":"Vilayphone Vilaysouk, Amr H. Nour-Eldin, Dermot Connolly","doi":"10.1109/ICASSP39728.2021.9414330","DOIUrl":null,"url":null,"abstract":"In this paper, we extend our previous work on the detection of system-directed speech utterances. This type of binary classification can be used by virtual assistants to create a more natural and fluid interaction between the system and the user. We explore two methods that both improve the Equal-Error-Rate (EER) performance of the previous model. The first exploits the supplementary information independently captured by ASR models through integrating ASR decoder-based features as additional inputs to the final classification stage of the model. This relatively improves EER performance by 13%. The second proposed method further integrates word embeddings into the architecture and, when combined with the first method, achieves a significant EER performance improvement of 48%, relative to that of the baseline.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we extend our previous work on the detection of system-directed speech utterances. This type of binary classification can be used by virtual assistants to create a more natural and fluid interaction between the system and the user. We explore two methods that both improve the Equal-Error-Rate (EER) performance of the previous model. The first exploits the supplementary information independently captured by ASR models through integrating ASR decoder-based features as additional inputs to the final classification stage of the model. This relatively improves EER performance by 13%. The second proposed method further integrates word embeddings into the architecture and, when combined with the first method, achieves a significant EER performance improvement of 48%, relative to that of the baseline.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深度学习基于 ASR 的单词嵌入和置信度指标,改进系统引导的语音片段识别
在本文中,我们扩展了之前在系统引导语音语篇检测方面的工作。虚拟助手可以利用这种二进制分类在系统和用户之间创建更自然流畅的交互。我们探索了两种方法,它们都提高了先前模型的等误率(EER)性能。第一种方法通过整合基于 ASR 解码器的特征,将其作为模型最终分类阶段的额外输入,从而利用 ASR 模型独立捕获的补充信息。这相对将 EER 性能提高了 13%。第二种方法将单词嵌入进一步整合到架构中,与第一种方法相结合后,EER 性能比基线方法显著提高了 48%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subspace Oddity - Optimization on Product of Stiefel Manifolds for EEG Data Recognition of Dynamic Hand Gesture Based on Mm-Wave Fmcw Radar Micro-Doppler Signatures Multi-Decoder Dprnn: Source Separation for Variable Number of Speakers Topic-Aware Dialogue Generation with Two-Hop Based Graph Attention On The Accuracy Limit of Joint Time-Delay/Doppler/Acceleration Estimation with a Band-Limited Signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1