F. Botelho, Fernando M. V. Ramos, D. Kreutz, A. Bessani
{"title":"On the Feasibility of a Consistent and Fault-Tolerant Data Store for SDNs","authors":"F. Botelho, Fernando M. V. Ramos, D. Kreutz, A. Bessani","doi":"10.1109/EWSDN.2013.13","DOIUrl":null,"url":null,"abstract":"Maintaining a strongly consistent network view in a Software Defined Network has been usually proclaimed as a synonym of low performance. We disagree. To support our view, in this paper we argue that with the use of modern distributed systems techniques it is possible to build a strongly consistent, fault-tolerant SDN control framework that achieves acceptable performance. The central element of our architecture is a highly-available, strongly consistent data store. We describe a prototype implementation of a distributed controller architecture integrating the Floodlight controller with a data store implemented using a state-of-the-art replication algorithm. We evaluate the feasibility of the proposed design by analyzing the workloads of real SDN applications (a learning switch, a load balancer and a device manager) and showing that the data store is capable of handling them with adequate performance.","PeriodicalId":256710,"journal":{"name":"2013 Second European Workshop on Software Defined Networks","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Second European Workshop on Software Defined Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EWSDN.2013.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63
Abstract
Maintaining a strongly consistent network view in a Software Defined Network has been usually proclaimed as a synonym of low performance. We disagree. To support our view, in this paper we argue that with the use of modern distributed systems techniques it is possible to build a strongly consistent, fault-tolerant SDN control framework that achieves acceptable performance. The central element of our architecture is a highly-available, strongly consistent data store. We describe a prototype implementation of a distributed controller architecture integrating the Floodlight controller with a data store implemented using a state-of-the-art replication algorithm. We evaluate the feasibility of the proposed design by analyzing the workloads of real SDN applications (a learning switch, a load balancer and a device manager) and showing that the data store is capable of handling them with adequate performance.