P. Dunker, C. Dittmar, André Begau, S. Nowak, M. Gruhne
{"title":"Semantic High-Level Features for Automated Cross-Modal Slideshow Generation","authors":"P. Dunker, C. Dittmar, André Begau, S. Nowak, M. Gruhne","doi":"10.1109/CBMI.2009.32","DOIUrl":null,"url":null,"abstract":"This paper describes a technical solution for automated slideshow generation by extracting a set of high-level features from music, such as beat grid, mood and genre and intelligently combining this set with image high-level features, such as mood, daytime- and scene classification. An advantage of this high-level concept is to enable the user to incorporate his preferences regarding the semantic aspects of music and images. For example, the user might request the system to automatically create a slideshow, which plays soft music and shows pictures with sunsets from the last 10 years of his own photo collection.The high-level feature extraction on both, the audio and the visual information is based on the same underlying machine learning core, which processes different audio- and visual- low- and mid-level features. This paper describes the technical realization and evaluation of the algorithms with suitable test databases.","PeriodicalId":417012,"journal":{"name":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2009.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper describes a technical solution for automated slideshow generation by extracting a set of high-level features from music, such as beat grid, mood and genre and intelligently combining this set with image high-level features, such as mood, daytime- and scene classification. An advantage of this high-level concept is to enable the user to incorporate his preferences regarding the semantic aspects of music and images. For example, the user might request the system to automatically create a slideshow, which plays soft music and shows pictures with sunsets from the last 10 years of his own photo collection.The high-level feature extraction on both, the audio and the visual information is based on the same underlying machine learning core, which processes different audio- and visual- low- and mid-level features. This paper describes the technical realization and evaluation of the algorithms with suitable test databases.