{"title":"Versatile land navigation using inertial sensors and odometry: Self-calibration, in-motion alignment and positioning","authors":"Yuanxin Wu","doi":"10.1109/INERTIALSENSORS.2014.7049412","DOIUrl":null,"url":null,"abstract":"Inertial measurement unit (IMU) and odometer have been commonly-used sensors for autonomous land navigation in the global positioning system (GPS)-denied scenarios. This paper systematically proposes a versatile strategy for self-contained land vehicle navigation using the IMU and an odometer. Specifically, the paper proposes a self-calibration and refinement method for IMU/odometer integration that is able to overcome significant variation of the misalignment parameters, which are induced by many inevitable and adverse factors such as load changing, refueling and ambient temperature. An odometer-aided IMU in-motion alignment algorithm is also devised that enables the first-responsive functionality even when the vehicle is running freely. The versatile strategy is successfully demonstrated and verified via long-distance real tests.","PeriodicalId":371540,"journal":{"name":"2014 DGON Inertial Sensors and Systems (ISS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 DGON Inertial Sensors and Systems (ISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIALSENSORS.2014.7049412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
Inertial measurement unit (IMU) and odometer have been commonly-used sensors for autonomous land navigation in the global positioning system (GPS)-denied scenarios. This paper systematically proposes a versatile strategy for self-contained land vehicle navigation using the IMU and an odometer. Specifically, the paper proposes a self-calibration and refinement method for IMU/odometer integration that is able to overcome significant variation of the misalignment parameters, which are induced by many inevitable and adverse factors such as load changing, refueling and ambient temperature. An odometer-aided IMU in-motion alignment algorithm is also devised that enables the first-responsive functionality even when the vehicle is running freely. The versatile strategy is successfully demonstrated and verified via long-distance real tests.