A neural network endowed with symbolic processing ability

D. Vogiatzis, A. Stafylopatis
{"title":"A neural network endowed with symbolic processing ability","authors":"D. Vogiatzis, A. Stafylopatis","doi":"10.1109/IJCNN.1999.830809","DOIUrl":null,"url":null,"abstract":"We propose a neural network method for the generation of symbolic expressions using reinforcement learning. According to the proposed method, a human decides on the kind and number of primitive functions which, with the appropriate composition (in the mathematical sense), can represent a mapping between two domains. The appropriate composition is achieved by an agent which tries many compositions and receives a reward depending on the quality of the composed function.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.830809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a neural network method for the generation of symbolic expressions using reinforcement learning. According to the proposed method, a human decides on the kind and number of primitive functions which, with the appropriate composition (in the mathematical sense), can represent a mapping between two domains. The appropriate composition is achieved by an agent which tries many compositions and receives a reward depending on the quality of the composed function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有符号处理能力的神经网络
我们提出了一种使用强化学习生成符号表达式的神经网络方法。根据所提出的方法,人类决定原始函数的种类和数量,通过适当的组合(在数学意义上),可以表示两个域之间的映射。通过尝试许多组合并根据组合函数的质量获得奖励的代理来实现适当的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1