Latent semantic analysis-based image auto annotation

Mahdia Bakalem, N. Benblidia, S. Oukid
{"title":"Latent semantic analysis-based image auto annotation","authors":"Mahdia Bakalem, N. Benblidia, S. Oukid","doi":"10.1109/ICMWI.2010.5648152","DOIUrl":null,"url":null,"abstract":"The image retrieval is a particular case of information retrieval. It adds more complex mechanisms to relevance image retrieval: visual content analysis and/or additional textual content. The image auto annotation is a technique that associates text to image, and permits to retrieve image documents as textual documents, thus as in information retrieval. The image auto annotation is then an effective technology for improving the image retrieval. In this work, we propose the AnnotB-LSA algorithm in its first version for the image auto-annotation. The integration of the LSA model permits to extract the latent semantic relations in the textual describers and to minimize the ambiguousness (polysemy, synonymy) between the annotations of images.","PeriodicalId":404577,"journal":{"name":"2010 International Conference on Machine and Web Intelligence","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine and Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMWI.2010.5648152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The image retrieval is a particular case of information retrieval. It adds more complex mechanisms to relevance image retrieval: visual content analysis and/or additional textual content. The image auto annotation is a technique that associates text to image, and permits to retrieve image documents as textual documents, thus as in information retrieval. The image auto annotation is then an effective technology for improving the image retrieval. In this work, we propose the AnnotB-LSA algorithm in its first version for the image auto-annotation. The integration of the LSA model permits to extract the latent semantic relations in the textual describers and to minimize the ambiguousness (polysemy, synonymy) between the annotations of images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于潜在语义分析的图像自动标注
图像检索是信息检索的一种特殊情况。它为相关图像检索添加了更复杂的机制:视觉内容分析和/或额外的文本内容。图像自动标注是一种将文本与图像关联起来的技术,它允许将图像文档作为文本文档检索,从而实现信息检索。图像自动标注是改进图像检索的一种有效技术。在这项工作中,我们提出了用于图像自动注释的AnnotB-LSA算法的第一个版本。LSA模型的集成可以提取文本描述符中的潜在语义关系,并最大限度地减少图像注释之间的歧义(多义、同义)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Disparity map estimation with neural network Weighted matrix distance metric for face images classification Exploring semantic roles of Web interface components Clustering approach for false alerts reducing in behavioral based intrusion detection systems Towards re-engineering Web applications into Semantic Web Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1