Rohan Tabish, R. Mancuso, Saud Wasly, A. Alhammad, Sujit S. Phatak, R. Pellizzoni, M. Caccamo
{"title":"A Real-Time Scratchpad-Centric OS for Multi-Core Embedded Systems","authors":"Rohan Tabish, R. Mancuso, Saud Wasly, A. Alhammad, Sujit S. Phatak, R. Pellizzoni, M. Caccamo","doi":"10.1109/RTAS.2016.7461321","DOIUrl":null,"url":null,"abstract":"Multi-core processors have replaced single-core systems in almost every segment of the industry. Unfortunately, their increased complexity often causes a loss of temporal predictability which represents a key requirement for hard real-time systems. Major sources of unpredictability are the shared low level resources, such as the memory hierarchy and the I/O subsystem. In this paper, we approach the problem of shared resource arbitration at an OS-level and propose a novel scratchpad-centric OS design for multi-core platforms. In the proposed OS, the predictable usage of shared resources across multiple cores represents a central design-time goal. Hence, we show (i) how contention-free execution of real-time tasks can be achieved on scratchpad-based architectures, and (ii) how a separation of application logic and I/O perations in the time domain can be enforced. To validate the proposed design, we implemented the proposed OS using a commercial-off-the-shelf (COTS) platform. Experiments show that this novel design delivers predictable temporal behavior to hard real-time tasks, and it improves performance up to 2.1× compared to traditional approaches.","PeriodicalId":338179,"journal":{"name":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2016.7461321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68
Abstract
Multi-core processors have replaced single-core systems in almost every segment of the industry. Unfortunately, their increased complexity often causes a loss of temporal predictability which represents a key requirement for hard real-time systems. Major sources of unpredictability are the shared low level resources, such as the memory hierarchy and the I/O subsystem. In this paper, we approach the problem of shared resource arbitration at an OS-level and propose a novel scratchpad-centric OS design for multi-core platforms. In the proposed OS, the predictable usage of shared resources across multiple cores represents a central design-time goal. Hence, we show (i) how contention-free execution of real-time tasks can be achieved on scratchpad-based architectures, and (ii) how a separation of application logic and I/O perations in the time domain can be enforced. To validate the proposed design, we implemented the proposed OS using a commercial-off-the-shelf (COTS) platform. Experiments show that this novel design delivers predictable temporal behavior to hard real-time tasks, and it improves performance up to 2.1× compared to traditional approaches.