Neural Abstractive Summarization: A Brief Survey

Lu Qian, Haiyang Zhang, Wen Wang, Dawei Liu, Xin Huang
{"title":"Neural Abstractive Summarization: A Brief Survey","authors":"Lu Qian, Haiyang Zhang, Wen Wang, Dawei Liu, Xin Huang","doi":"10.1109/CCAI57533.2023.10201274","DOIUrl":null,"url":null,"abstract":"Due to the development of neural networks, abstractive summarization has received more attention than extractive one, and has gained significant progress in generating fluent and human-like summaries with novel expressions. Seq2seq has become the primary framework for abstractive summarization, employing encoder-decoder architecture based on RNNs or CNNs, and Transformers. In this paper, we focus on reviewing the neural models that are based on seq2seq framework for abstractive summarization. Moreover, we discuss some of the most effective techniques for improving seq2seq models and provide two challenging directions, i.e. generating query-based abstractive summaries and incorporating commonsense knowledge, for in-depth investigation.","PeriodicalId":285760,"journal":{"name":"2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence (CCAI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence (CCAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAI57533.2023.10201274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the development of neural networks, abstractive summarization has received more attention than extractive one, and has gained significant progress in generating fluent and human-like summaries with novel expressions. Seq2seq has become the primary framework for abstractive summarization, employing encoder-decoder architecture based on RNNs or CNNs, and Transformers. In this paper, we focus on reviewing the neural models that are based on seq2seq framework for abstractive summarization. Moreover, we discuss some of the most effective techniques for improving seq2seq models and provide two challenging directions, i.e. generating query-based abstractive summaries and incorporating commonsense knowledge, for in-depth investigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经抽象文摘:简要综述
由于神经网络的发展,抽象摘要比提取摘要得到了更多的关注,并在生成具有新颖表达的流畅的类人摘要方面取得了重大进展。Seq2seq已成为抽象摘要的主要框架,采用基于rnn或cnn的编码器-解码器架构和transformer。本文主要综述了基于seq2seq框架的神经网络抽象摘要模型。此外,我们还讨论了改进seq2seq模型的一些最有效的技术,并提供了两个具有挑战性的方向,即生成基于查询的抽象摘要和结合常识性知识,以供深入研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Survey of Neuromorphic Computing: A Data Science Perspective Towards Accurate Crowd Counting Via Smoothed Dilated Convolutions and Transformer Optimization UUV Self-localization Method Based on Distributed Network Machine Learning Approach to Sentiment Recognition from Periodic Reports Research on Lightweight 5G Core Network on Cloud Native Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1