LMS adaptive filter with optimum step-size for tracking time-varying channels

R. Bilcu, P. Kuosmanen, K. Egiazarian
{"title":"LMS adaptive filter with optimum step-size for tracking time-varying channels","authors":"R. Bilcu, P. Kuosmanen, K. Egiazarian","doi":"10.1109/ISPA.2003.1296403","DOIUrl":null,"url":null,"abstract":"In this paper, an adaptive step-size LMS algorithm for tracking time-varying channels is presented. It is well known that in the case of such channels, the output steady-state mean square error (MSB) is a nonlinear function of the algorithm step-size and so, an optimum step-size that minimize the MSE exist. Here we propose an algorithm which adaptively adjust the step-size of the LMS toward its optimum value, such that the steady-state MSE is minimized. The nonlinear relation between the steady-state MSE and the step-size is parametrized such that, during the adaptation, estimates of the optimum step-size are easily obtained. These estimates are obtained independent from the channel statistical parameters, therefore, no prior information about the channel parameters is needed.","PeriodicalId":218932,"journal":{"name":"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2003.1296403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, an adaptive step-size LMS algorithm for tracking time-varying channels is presented. It is well known that in the case of such channels, the output steady-state mean square error (MSB) is a nonlinear function of the algorithm step-size and so, an optimum step-size that minimize the MSE exist. Here we propose an algorithm which adaptively adjust the step-size of the LMS toward its optimum value, such that the steady-state MSE is minimized. The nonlinear relation between the steady-state MSE and the step-size is parametrized such that, during the adaptation, estimates of the optimum step-size are easily obtained. These estimates are obtained independent from the channel statistical parameters, therefore, no prior information about the channel parameters is needed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于时变信道跟踪的最优步长LMS自适应滤波器
本文提出了一种用于时变信道跟踪的自适应步长LMS算法。众所周知,在这种信道的情况下,输出稳态均方误差(MSB)是算法步长的非线性函数,因此存在最小化MSE的最佳步长。本文提出了一种自适应调整LMS步长到最优值的算法,使稳态MSE最小。将稳态MSE与步长之间的非线性关系参数化,从而在自适应过程中容易估计出最优步长。这些估计是独立于信道统计参数获得的,因此,不需要关于信道参数的先验信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning semantics in content based image retrieval Timing-free blind multiuser detection for multicarrier DS/CDMA systems with multiple antennas Adaptive weighted median filter using local entropy for ultrasonic image denoising A new 2D adaptive nonlinear filter based on the Lyapunov stability theory Tissue segmentation of multi-channel brain images with inhomogeneity correction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1