A Tuning Free Approach to Multi-guide Particle Swarm Optimization

Kyle Erwin, A. Engelbrecht
{"title":"A Tuning Free Approach to Multi-guide Particle Swarm Optimization","authors":"Kyle Erwin, A. Engelbrecht","doi":"10.1109/SSCI50451.2021.9660050","DOIUrl":null,"url":null,"abstract":"Multi-guide particle swarm optimization (MGPSO) is a highly competitive algorithm for multi-objective optimization problems. MGPSO has been shown to perform better than or similar to several state-of-the-art multi-objective algorithms for a variety of multi-objective optimization problems (MOOPs). When comparing algorithmic performance it is recommended that the control parameters of each algorithm be tuned to the problem. However, control parameter tuning is often an expensive and time-consuming process. Recent work has derived the theoretical stability conditions on the MGPSO control parameters to guarantee order-1 and order-2 stability. This paper investigates an approach to randomly sample control parameter values for MGPSO that satisfy these stability conditions. It was shown that the proposed approach yields similar performance to that of MGPSO using tuned parameters, and therefore is a viable alternative to parameter tuning.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-guide particle swarm optimization (MGPSO) is a highly competitive algorithm for multi-objective optimization problems. MGPSO has been shown to perform better than or similar to several state-of-the-art multi-objective algorithms for a variety of multi-objective optimization problems (MOOPs). When comparing algorithmic performance it is recommended that the control parameters of each algorithm be tuned to the problem. However, control parameter tuning is often an expensive and time-consuming process. Recent work has derived the theoretical stability conditions on the MGPSO control parameters to guarantee order-1 and order-2 stability. This paper investigates an approach to randomly sample control parameter values for MGPSO that satisfy these stability conditions. It was shown that the proposed approach yields similar performance to that of MGPSO using tuned parameters, and therefore is a viable alternative to parameter tuning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多导粒子群优化的无调优方法
多导向粒子群算法是一种求解多目标优化问题的高度竞争算法。对于各种多目标优化问题(MOOPs), MGPSO的表现优于或类似于几种最先进的多目标算法。在比较算法性能时,建议针对问题调整每个算法的控制参数。然而,控制参数调优通常是一个昂贵且耗时的过程。最近的工作推导了MGPSO控制参数保证阶1和阶2稳定性的理论稳定性条件。本文研究了满足这些稳定性条件的MGPSO的随机抽样控制参数取值方法。结果表明,所提出的方法与使用调优参数的MGPSO产生相似的性能,因此是参数调优的可行替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1