M2D-QPCA: An Improved Quaternion Principal Component Analysis Method for Color Face Recognition

Song Song, Kaisong Sun, Minghui Wang
{"title":"M2D-QPCA: An Improved Quaternion Principal Component Analysis Method for Color Face Recognition","authors":"Song Song, Kaisong Sun, Minghui Wang","doi":"10.32861/ajams.62.5.14","DOIUrl":null,"url":null,"abstract":"Principal component analysis (PCA) is one of the successful dimensionality reduction approaches for color face recognition. For various PCA methods, the experiments show that the contribution of eigenvectors is different and different weights of eigenvectors can cause different effects. Based on this, a modified and simplified color two-dimensional quaternion principal component analysis (M2D-QPCA) method is proposed along the framework of the color two-dimensional quaternion principal component analysis (2D-QPCA) method and the improved two-dimensional quaternion principal component analysis (2D-GQPCA) method. The shortcomings of 2D-QPCA are corrected and the CPU time of 2D-GQPCA is reduced. The experiments on two real face data sets show that the accuracy of M2D-QPCA is better than that of 2D-QPCA and other PCA-like methods and the CPU time of M2D-QPCA is less than that of 2D-GQPCA.","PeriodicalId":375032,"journal":{"name":"Academic Journal of Applied Mathematical Sciences","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Applied Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32861/ajams.62.5.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Principal component analysis (PCA) is one of the successful dimensionality reduction approaches for color face recognition. For various PCA methods, the experiments show that the contribution of eigenvectors is different and different weights of eigenvectors can cause different effects. Based on this, a modified and simplified color two-dimensional quaternion principal component analysis (M2D-QPCA) method is proposed along the framework of the color two-dimensional quaternion principal component analysis (2D-QPCA) method and the improved two-dimensional quaternion principal component analysis (2D-GQPCA) method. The shortcomings of 2D-QPCA are corrected and the CPU time of 2D-GQPCA is reduced. The experiments on two real face data sets show that the accuracy of M2D-QPCA is better than that of 2D-QPCA and other PCA-like methods and the CPU time of M2D-QPCA is less than that of 2D-GQPCA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
M2D-QPCA:改进的四元数主成分分析方法用于彩色人脸识别
主成分分析(PCA)是彩色人脸识别中一种成功的降维方法。对于不同的主成分分析方法,实验表明特征向量的贡献是不同的,不同的特征向量权重会产生不同的效果。在此基础上,沿着颜色二维四元数主成分分析(2D-QPCA)方法和改进二维四元数主成分分析(2D-GQPCA)方法的框架,提出了一种改进和简化的颜色二维四元数主成分分析(M2D-QPCA)方法。修正了2D-GQPCA的不足,减少了2D-GQPCA的CPU时间。在两个真实人脸数据集上的实验表明,M2D-QPCA的准确率优于2D-QPCA和其他类pca方法,且CPU时间小于2D-GQPCA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Special Spirals are Produced by the ROTASE Galactic Spiral Equations with the Sequential Prime Numbers On Bivariate Modeling of the COVID-19 Data with a New Type I Half-Logistic Inverse Weibull Distribution Stable Numerical Differentiation Algorithms Based on the Fourier Transform in Frequency Domain Rotation Equation of a Point in Air and its Solution Linear Programming on Bread Production Using Uncertainty Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1