Algorithms for the Generalized Sorting Problem

Zhiyi Huang, Sampath Kannan, S. Khanna
{"title":"Algorithms for the Generalized Sorting Problem","authors":"Zhiyi Huang, Sampath Kannan, S. Khanna","doi":"10.1109/FOCS.2011.54","DOIUrl":null,"url":null,"abstract":"We study the generalized sorting problem where we are given a set of n elements to be sorted but only a subset of all possible pair wise element comparisons is allowed. The goal is to determine the sorted order using the smallest possible number of allowed comparisons. The generalized sorting problem may be equivalently viewed as follows. Given an undirected graph G(V, E) where V is the set of elements to be sorted and E defines the set of allowed comparisons, adaptively find the smallest subset E¡ä \\subseteq E of edges to probe such that the directed graph induced by E¡ä contains a Hamiltonian path. When G is a complete graph, we get the standard sorting problem, and it is well-known that Theta(n log n) comparisons are necessary and sufficient. An extensively studied special case of the generalized sorting problem is the nuts and bolts problem where the allowed comparison graph is a complete bipartite graph between two equal-size sets. It is known that for this special case also, there is a deterministic algorithm that sorts using Theta(n log n) comparisons. However, when the allowed comparison graph is arbitrary, to our knowledge, no bound better than the trivial O(n^2) bound is known. Our main result is a randomized algorithm that sorts any allowed comparison graph using O(n^{3/2}) comparisons with high probability (provided the input is sortable). We also study the sorting problem in randomly generated allowed comparison graphs, and show that when the edge probability is p, O(min{ n/p^2, n^{3/2}\\sqrt{p}) comparisons suffice on average to sort.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We study the generalized sorting problem where we are given a set of n elements to be sorted but only a subset of all possible pair wise element comparisons is allowed. The goal is to determine the sorted order using the smallest possible number of allowed comparisons. The generalized sorting problem may be equivalently viewed as follows. Given an undirected graph G(V, E) where V is the set of elements to be sorted and E defines the set of allowed comparisons, adaptively find the smallest subset E¡ä \subseteq E of edges to probe such that the directed graph induced by E¡ä contains a Hamiltonian path. When G is a complete graph, we get the standard sorting problem, and it is well-known that Theta(n log n) comparisons are necessary and sufficient. An extensively studied special case of the generalized sorting problem is the nuts and bolts problem where the allowed comparison graph is a complete bipartite graph between two equal-size sets. It is known that for this special case also, there is a deterministic algorithm that sorts using Theta(n log n) comparisons. However, when the allowed comparison graph is arbitrary, to our knowledge, no bound better than the trivial O(n^2) bound is known. Our main result is a randomized algorithm that sorts any allowed comparison graph using O(n^{3/2}) comparisons with high probability (provided the input is sortable). We also study the sorting problem in randomly generated allowed comparison graphs, and show that when the edge probability is p, O(min{ n/p^2, n^{3/2}\sqrt{p}) comparisons suffice on average to sort.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义排序问题的算法
我们研究了一个广义排序问题,在这个问题中,给定一个n个元素的集合要排序,但只允许所有可能的元素对比较的一个子集。目标是使用尽可能少的允许比较来确定排序顺序。广义排序问题可以等价地看作如下。给定一个无向图G(V, E),其中V是待排序元素的集合,E定义了允许比较的集合,自适应地找到边的最小子集E′ä \subseteq E来探测,使得E′ä诱导的有向图包含哈密顿路径。当G是完全图时,我们得到标准排序问题,众所周知,(n log n)比较是充分必要的。广义排序问题的一个被广泛研究的特例是螺母和螺栓问题,其中允许的比较图是两个大小相等的集合之间的完全二部图。众所周知,对于这种特殊情况,也有一种确定性算法,它使用Theta(n log n)比较进行排序。然而,当允许的比较图是任意的,据我们所知,没有比平凡的O(n^2)界更好的界了。我们的主要结果是一个随机算法,它以高概率使用O(n^{3/2})个比较对任何允许的比较图进行排序(假设输入是可排序的)。我们还研究了随机生成的允许比较图的排序问题,并证明了当边概率为p时,O(min{n/p^2, n^{3/2}\sqrt{p})次比较平均足以排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Randomized Rounding Approach to the Traveling Salesman Problem Welfare and Profit Maximization with Production Costs Which Networks are Least Susceptible to Cascading Failures? Computing Blindfolded: New Developments in Fully Homomorphic Encryption The 1D Area Law and the Complexity of Quantum States: A Combinatorial Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1