EEG motor imagery signals classification using maximum overlap wavelet transform and support vector machine

Cesar E. Hernández-González, J. Ramírez-Cortés, P. Gómez-Gil, J. Rangel-Magdaleno, H. Peregrina-Barreto, Israel Cruz-Vega
{"title":"EEG motor imagery signals classification using maximum overlap wavelet transform and support vector machine","authors":"Cesar E. Hernández-González, J. Ramírez-Cortés, P. Gómez-Gil, J. Rangel-Magdaleno, H. Peregrina-Barreto, Israel Cruz-Vega","doi":"10.1109/ROPEC.2017.8261667","DOIUrl":null,"url":null,"abstract":"A BCI system (Brain-Computer Interface) aims to the interpretation of brain signals perceived through electroencephalography (EEG) sensors in order to allow the user interaction with the environment through specific actions. In this paper we present an experiment of EEG signal classification under the motor imagery paradigm using two feature extraction methods for comparison purposes: discrete wavelet transform (DWT) and maximum overlap discrete wavelet transform (MODWT). The feature vectors are fed into a support vector machine (SVM) classification system. The results obtained show an accuracy of 98.81% in average.","PeriodicalId":260469,"journal":{"name":"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2017.8261667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A BCI system (Brain-Computer Interface) aims to the interpretation of brain signals perceived through electroencephalography (EEG) sensors in order to allow the user interaction with the environment through specific actions. In this paper we present an experiment of EEG signal classification under the motor imagery paradigm using two feature extraction methods for comparison purposes: discrete wavelet transform (DWT) and maximum overlap discrete wavelet transform (MODWT). The feature vectors are fed into a support vector machine (SVM) classification system. The results obtained show an accuracy of 98.81% in average.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最大重叠小波变换和支持向量机的脑电运动图像信号分类
BCI系统(脑机接口)旨在解释通过脑电图(EEG)传感器感知到的大脑信号,从而允许用户通过特定动作与环境进行交互。本文采用离散小波变换(DWT)和最大重叠离散小波变换(MODWT)两种特征提取方法对运动意象范式下的脑电信号进行了分类实验。将特征向量输入到支持向量机(SVM)分类系统中。结果表明,该方法的平均准确度为98.81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The teaching-learning of Graph Theory with the support of Learn Graph-Ware software Efficiency based comparative analysis of selected classical MPPT methods YOCASTA: A ludic-interactive system to support the detection of anxiety and lack of concentration in children with disabilities Design and analysis of performance of a forward converter with winding tertiary Sags and swells compensation and power factor correction using a dynamic voltage restorer in distribution systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1