{"title":"Analysis and Research on YOLOv5s Vehicle Detection with CA and BiFPN Fusion","authors":"Muyang Lin, Zhiwen Wang, Lincai Huang","doi":"10.1109/ECICE55674.2022.10042933","DOIUrl":null,"url":null,"abstract":"An algorithm based on improved YOLOv5s is proposed to solve the problems of false and missing vehicle detections. Firstly, a coordinate-attention (CA) module is added to the backbone feature of an extraction network to obtain more important information during feature extraction and improve object detection accuracy. Then, the weighted bi-directional feature pyramid network (BiFPN) is adopted to replace the original PANet structure in the YOLOv5s network. This method enhances the multi-scale feature fusion of the model and improves the fusion efficiency. Experiment results present that the mean average precision (mAP) of the improved YOLOv5s algorithm on the BIT-Vehicle Dataset reaches 94.S%, which is 2.S% higher than that of the original YOLOv5s network, and the processing frame rate reaches 136.9, which allows real-time detection by satisfying its requirements.","PeriodicalId":282635,"journal":{"name":"2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE55674.2022.10042933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
An algorithm based on improved YOLOv5s is proposed to solve the problems of false and missing vehicle detections. Firstly, a coordinate-attention (CA) module is added to the backbone feature of an extraction network to obtain more important information during feature extraction and improve object detection accuracy. Then, the weighted bi-directional feature pyramid network (BiFPN) is adopted to replace the original PANet structure in the YOLOv5s network. This method enhances the multi-scale feature fusion of the model and improves the fusion efficiency. Experiment results present that the mean average precision (mAP) of the improved YOLOv5s algorithm on the BIT-Vehicle Dataset reaches 94.S%, which is 2.S% higher than that of the original YOLOv5s network, and the processing frame rate reaches 136.9, which allows real-time detection by satisfying its requirements.