{"title":"Privacy-Preserving OLAP via Modeling and Analysis of Query Workloads: Innovative Theories and Theorems","authors":"A. Cuzzocrea","doi":"10.1145/3603719.3603735","DOIUrl":null,"url":null,"abstract":"This paper proposes innovative theories and theorems in the context of a state-of-the-art paper that computes privacy-preserving OLAP cubes via modeling and analyzing query workloads. The work contributes to actual literature by devising a solid theoretical framework that can be used for future optimization opportunities.","PeriodicalId":314512,"journal":{"name":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603719.3603735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes innovative theories and theorems in the context of a state-of-the-art paper that computes privacy-preserving OLAP cubes via modeling and analyzing query workloads. The work contributes to actual literature by devising a solid theoretical framework that can be used for future optimization opportunities.