{"title":"A smart data control system for environment recognition lidar on Zynq SoCs","authors":"Ru-qing Liu, Jing-guo Zhu, Feng Li, Yan Jiang, Cheng-hao Jiang, Zhe Meng, Zhengyu Zhang","doi":"10.1117/12.2613429","DOIUrl":null,"url":null,"abstract":"Nowadays, laser ranging is widely used in industrial and security fields. As one of the most well-known pulse laser detection system, Lidar is a much effective equipment for environmental recognition. Currently, research on autonomous and smart vehicles technology has been growing exponentially in recent years by integrating more and more smart hardware or software inside. Most studies are almost based on non-real-time operating system with random delays, which leads to lag and inaccuracies in the received data. Based on a self-developed three-dimensional Lidar, a smart embedded system for real-time data transmission on the FPGA Zynq is proposed. The real-time signal acquisition and transmission system is implemented and verified in the three-dimensional imaging experiments system. In this system, verilog code is applied for Lidar data control acquisition and transmission. C/C++ code is used for data calculation and uploading the point cloud data to the computer through the network to realize the real-time display of point cloud. Experimental results demonstrate that the Lidar data are correctly read by the FPGA board. In addition, the real time data acquisition meets the requirements of control and real time data acquisition and procession at 20fps. The proposed approach provides a very useful basic platform for many applications using Lidar as a sensor and will improve their detection accuracy.","PeriodicalId":205170,"journal":{"name":"Atomic and Molecular Pulsed Lasers","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic and Molecular Pulsed Lasers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2613429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, laser ranging is widely used in industrial and security fields. As one of the most well-known pulse laser detection system, Lidar is a much effective equipment for environmental recognition. Currently, research on autonomous and smart vehicles technology has been growing exponentially in recent years by integrating more and more smart hardware or software inside. Most studies are almost based on non-real-time operating system with random delays, which leads to lag and inaccuracies in the received data. Based on a self-developed three-dimensional Lidar, a smart embedded system for real-time data transmission on the FPGA Zynq is proposed. The real-time signal acquisition and transmission system is implemented and verified in the three-dimensional imaging experiments system. In this system, verilog code is applied for Lidar data control acquisition and transmission. C/C++ code is used for data calculation and uploading the point cloud data to the computer through the network to realize the real-time display of point cloud. Experimental results demonstrate that the Lidar data are correctly read by the FPGA board. In addition, the real time data acquisition meets the requirements of control and real time data acquisition and procession at 20fps. The proposed approach provides a very useful basic platform for many applications using Lidar as a sensor and will improve their detection accuracy.