TomatoDIFF: On–plant Tomato Segmentation with Denoising Diffusion Models *

Marija Ivanovska, Vitomir Štruc, J. Pers
{"title":"TomatoDIFF: On–plant Tomato Segmentation with Denoising Diffusion Models *","authors":"Marija Ivanovska, Vitomir Štruc, J. Pers","doi":"10.23919/MVA57639.2023.10215774","DOIUrl":null,"url":null,"abstract":"Artificial intelligence applications enable farmers to optimize crop growth and production while reducing costs and environmental impact. Computer vision-based algorithms in particular, are commonly used for fruit segmentation, enabling in-depth analysis of the harvest quality and accurate yield estimation. In this paper, we propose TomatoDIFF, a novel diffusion-based model for semantic segmentation of on-plant tomatoes. When evaluated against other competitive methods, our model demonstrates state-of-the-art (SOTA) performance, even in challenging environments with highly occluded fruits. Additionally, we introduce Tomatopia, a new, large and challenging dataset of greenhouse tomatoes. The dataset comprises high-resolution RGB-D images and pixel-level annotations of the fruits. The source code of TomatoDIFF and Tomatopia are available at https://github.com/MIvanovska/TomatoDIFF.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Artificial intelligence applications enable farmers to optimize crop growth and production while reducing costs and environmental impact. Computer vision-based algorithms in particular, are commonly used for fruit segmentation, enabling in-depth analysis of the harvest quality and accurate yield estimation. In this paper, we propose TomatoDIFF, a novel diffusion-based model for semantic segmentation of on-plant tomatoes. When evaluated against other competitive methods, our model demonstrates state-of-the-art (SOTA) performance, even in challenging environments with highly occluded fruits. Additionally, we introduce Tomatopia, a new, large and challenging dataset of greenhouse tomatoes. The dataset comprises high-resolution RGB-D images and pixel-level annotations of the fruits. The source code of TomatoDIFF and Tomatopia are available at https://github.com/MIvanovska/TomatoDIFF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
番茄diff:基于去噪扩散模型的番茄切分方法*
人工智能应用使农民能够优化作物生长和生产,同时降低成本和环境影响。特别是基于计算机视觉的算法,通常用于水果分割,可以深入分析收获质量和准确估计产量。在本文中,我们提出了一种新的基于扩散的番茄语义分割模型TomatoDIFF。当与其他竞争方法进行评估时,我们的模型显示了最先进的(SOTA)性能,即使在具有高度遮挡的水果的挑战性环境中也是如此。此外,我们还介绍了一个新的、大型的、具有挑战性的温室番茄数据集Tomatopia。该数据集包括高分辨率RGB-D图像和水果的像素级注释。TomatoDIFF和Tomatopia的源代码可在https://github.com/MIvanovska/TomatoDIFF上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Small Object Detection for Birds with Swin Transformer CG-based dataset generation and adversarial image conversion for deep cucumber recognition Uncertainty Criteria in Active Transfer Learning for Efficient Video-Specific Human Pose Estimation Joint Learning with Group Relation and Individual Action Diabetic Retinopathy Grading based on a Sparse Network Fusion of Heterogeneous ConvNeXt Models with Category Attention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1