Design methodology for mitigating transient errors in analogue and mixed-signal circuits

S. Askari, M. Nourani
{"title":"Design methodology for mitigating transient errors in analogue and mixed-signal circuits","authors":"S. Askari, M. Nourani","doi":"10.1049/iet-cds.2012.0053","DOIUrl":null,"url":null,"abstract":"N-tuple modular redundancy techniques have been widely used to improve the reliability of digital circuits. Unfortunately, an equivalent technique has been rarely used for analogue and mixed-signal systems. In this study, propose a redundancy-based fault-tolerant methodology is proposed to design highly reliable analogue and mixed-signal circuits. The key contribution of the proposed work is: (a) systematic sensitivity analysis to identify critical nodes in a circuit and (b) a design methodology for improving the reliability of analogue and mixed-signal circuits using an innovative mean voter. The mean voter is a low-power, small area, very high bandwidth and linearly scalable unit; and it works for both odd and even redundancy factors. For the proof of concept, the authors designed two analogue-to-digital converters and an analogue filter, which are used in mixed-signal applications. Experimental results are reported to verify the concept and measure the system's reliability when failures, such as single upset transient faults, occur.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds.2012.0053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

N-tuple modular redundancy techniques have been widely used to improve the reliability of digital circuits. Unfortunately, an equivalent technique has been rarely used for analogue and mixed-signal systems. In this study, propose a redundancy-based fault-tolerant methodology is proposed to design highly reliable analogue and mixed-signal circuits. The key contribution of the proposed work is: (a) systematic sensitivity analysis to identify critical nodes in a circuit and (b) a design methodology for improving the reliability of analogue and mixed-signal circuits using an innovative mean voter. The mean voter is a low-power, small area, very high bandwidth and linearly scalable unit; and it works for both odd and even redundancy factors. For the proof of concept, the authors designed two analogue-to-digital converters and an analogue filter, which are used in mixed-signal applications. Experimental results are reported to verify the concept and measure the system's reliability when failures, such as single upset transient faults, occur.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
减轻模拟和混合信号电路中瞬态误差的设计方法
n元组模块冗余技术被广泛用于提高数字电路的可靠性。不幸的是,等效技术很少用于模拟和混合信号系统。在这项研究中,提出了一种基于冗余的容错方法来设计高可靠的模拟和混合信号电路。所提出的工作的关键贡献是:(a)识别电路中关键节点的系统灵敏度分析和(b)使用创新的平均投票人提高模拟和混合信号电路可靠性的设计方法。平均选民是一个低功耗,小面积,非常高的带宽和线性可扩展的单位;它对奇数和偶数冗余因子都有效。为了验证概念,作者设计了两个模数转换器和一个模拟滤波器,用于混合信号应用。实验结果验证了这一概念,并测量了系统在发生故障时的可靠性,如单次扰动瞬态故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A low-offset low-power and high-speed dynamic latch comparator with a preamplifier-enhanced stage Embedding delay-based physical unclonable functions in networks-on-chip Design of 10T SRAM cell with improved read performance and expanded write margin On the applicability of two-bit carbon nanotube through-silicon via for power distribution networks in 3-D integrated circuits Analytical model and simulation-based analysis of a work function engineered triple metal tunnel field-effect transistor device showing excellent device performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1