Improving Error Resilience Analysis Methodology of Iterative Workloads for Approximate Computing

G. Gillani, A. Kokkeler
{"title":"Improving Error Resilience Analysis Methodology of Iterative Workloads for Approximate Computing","authors":"G. Gillani, A. Kokkeler","doi":"10.1145/3075564.3078891","DOIUrl":null,"url":null,"abstract":"Assessing error resilience inherent to the digital processing workloads provides application-specific insights towards approximate computing strategies for improving power efficiency and/or performance. With the case study of radio astronomy calibration, our contributions for improving the error resilience analysis are focused primarily on iterative methods that use a convergence criterion as a quality metric to terminate the iterative computations. We propose an adaptive statistical approximation model for high-level resilience analysis that provides an opportunity to divide a workload into exact and approximate iterations. This improves the existing error resilience analysis methodology by quantifying the number of approximate iterations (23% of the total iterations in our case study) in addition to other parameters used in the state-of-the-art techniques. This way heterogeneous architectures comprised of exact and inexact computing cores and adaptive accuracy architectures can be exploited efficiently. Moreover, we demonstrate the importance of quality function reconsideration for convergence based iterative processes as the original quality function (the convergence criterion) is not necessarily sufficient in the resilience analysis phase. If such is the case, an additional quality function has to be defined to assess the viability of the approximate techniques.","PeriodicalId":398898,"journal":{"name":"Proceedings of the Computing Frontiers Conference","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Computing Frontiers Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3075564.3078891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Assessing error resilience inherent to the digital processing workloads provides application-specific insights towards approximate computing strategies for improving power efficiency and/or performance. With the case study of radio astronomy calibration, our contributions for improving the error resilience analysis are focused primarily on iterative methods that use a convergence criterion as a quality metric to terminate the iterative computations. We propose an adaptive statistical approximation model for high-level resilience analysis that provides an opportunity to divide a workload into exact and approximate iterations. This improves the existing error resilience analysis methodology by quantifying the number of approximate iterations (23% of the total iterations in our case study) in addition to other parameters used in the state-of-the-art techniques. This way heterogeneous architectures comprised of exact and inexact computing cores and adaptive accuracy architectures can be exploited efficiently. Moreover, we demonstrate the importance of quality function reconsideration for convergence based iterative processes as the original quality function (the convergence criterion) is not necessarily sufficient in the resilience analysis phase. If such is the case, an additional quality function has to be defined to assess the viability of the approximate techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进近似计算迭代工作负载的误差恢复分析方法
评估数字处理工作负载固有的错误恢复能力,为提高电源效率和/或性能的近似计算策略提供了特定于应用程序的见解。以射电天文校准为例,我们对改进误差恢复分析的贡献主要集中在迭代方法上,该方法使用收敛准则作为质量度量来终止迭代计算。我们提出了一个自适应的统计近似模型,用于高级弹性分析,该模型提供了将工作负载划分为精确迭代和近似迭代的机会。除了在最先进的技术中使用的其他参数之外,通过量化近似迭代的数量(在我们的案例研究中占总迭代的23%),这改进了现有的错误弹性分析方法。这种方法可以有效地利用由精确和不精确计算核心组成的异构体系结构以及自适应精度体系结构。此外,我们证明了质量函数重新考虑对于基于收敛的迭代过程的重要性,因为原始质量函数(收敛准则)在弹性分析阶段并不一定足够。如果是这种情况,则必须定义一个附加的质量函数来评估近似技术的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Support for Secure Stream Processing in Cloud Environments Private inter-network routing for Wireless Sensor Networks and the Internet of Things Analytical Performance Modeling and Validation of Intel's Xeon Phi Architecture Design of S-boxes Defined with Cellular Automata Rules Cloud Workload Prediction by Means of Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1