A Versatile Annotated Dataset for Multimodal Locomotion Analytics with Mobile Devices

H. Gjoreski, Mathias Ciliberto, Francisco Javier Ordonez, D. Roggen, S. Mekki, S. Valentin
{"title":"A Versatile Annotated Dataset for Multimodal Locomotion Analytics with Mobile Devices","authors":"H. Gjoreski, Mathias Ciliberto, Francisco Javier Ordonez, D. Roggen, S. Mekki, S. Valentin","doi":"10.1145/3131672.3136976","DOIUrl":null,"url":null,"abstract":"We explain how to obtain a highly versatile and precisely annotated dataset for the multimodal locomotion of mobile users. After presenting the experimental setup, data management challenges and potential applications, we conclude with the best practices for assuring data quality and reducing loss. The dataset currently comprises 7 months of measurements, collected by smartphone's sensors and a body-worn camera, while the 3 participants used 8 different modes of transportation. It comprises 950 GB of sensor data, which corresponds to 750 hours of labelled data. The obtained data will be useful for a wide range of research questions related to activity recognition, and will be made available to the community1.","PeriodicalId":424262,"journal":{"name":"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3131672.3136976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

We explain how to obtain a highly versatile and precisely annotated dataset for the multimodal locomotion of mobile users. After presenting the experimental setup, data management challenges and potential applications, we conclude with the best practices for assuring data quality and reducing loss. The dataset currently comprises 7 months of measurements, collected by smartphone's sensors and a body-worn camera, while the 3 participants used 8 different modes of transportation. It comprises 950 GB of sensor data, which corresponds to 750 hours of labelled data. The obtained data will be useful for a wide range of research questions related to activity recognition, and will be made available to the community1.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动设备多模态运动分析的通用注释数据集
我们解释了如何为移动用户的多模式运动获得高度通用和精确注释的数据集。在介绍了实验设置、数据管理挑战和潜在应用之后,我们总结了确保数据质量和减少损失的最佳实践。该数据集目前包括7个月的测量数据,由智能手机的传感器和随身携带的摄像头收集,而3名参与者使用了8种不同的交通方式。它包含950 GB的传感器数据,相当于750小时的标记数据。所获得的数据将对与活动识别有关的广泛研究问题有用,并将提供给社区1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stalwart: a Predictable Reliable Adaptive and Low-latency Real-time Wireless Protocol SmartLight: Light-weight 3D Indoor Localization Using a Single LED Lamp UWB-based Single-anchor Low-cost Indoor Localization System Hierarchical Subchannel Allocation for Mode-3 Vehicle-to-Vehicle Sidelink Communications Taming Link-layer Heterogeneity in IoT through Interleaving Multiple Link-Layers over a Single Radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1