Objectives. Automatic modulation recognition of unknown signals is an important task for various fields oftechnology such as radio control, radio monitoring, and identification of interference and sources of radio emission. The paper aims to develop a method for recognizing the types of signal modulation under conditions of parametric a priori uncertainty, including the uncertainty of carrier frequency- and initial signal phase values. An additional task consists in estimating the offset values of the carrier frequency or signal phase at the initial stage of the recognition process.Methods. A multi-task learning with artificial neural network and the theory of cumulants of random variables are used.Results. For signals with a carrier frequency and initial phase shift, cumulant approaches for QAM-8, APSK-16, QAM-64, and PSK-8 modulations are calculated. A multi-task learning with artificial neural network using cumulant features and a data standardization algorithm is presented. The results of the experiment show that using multi-task learning with an artificial neural network provides high accuracy of recognizing QAM-8 and APSK-16, QAM-64 and PSK-8 modulations with small mismatches of the carrier frequency or initial phase. The accuracy of determining the offset values from the carrier frequency or the initial phase for QAM-8, APSK-16, QAM-64, and PSK-8 modulation is high.Conclusions. The multi-task learning with neural network using high-order signal cumulants makes it possible not only to recognize modulation types with high accuracy under conditions of a priori uncertainty of signal parameters, but also to determine the offset values of carrier frequency or initial signal phase from expected values.