Domain-specific knowledge distillation yields smaller and better models for conversational commerce

Kristen Howell, Jian Wang, Akshay Hazare, Joe Bradley, Chris Brew, Xi Chen, Matthew Dunn, Beth-Ann Hockey, Andrew Maurer, D. Widdows
{"title":"Domain-specific knowledge distillation yields smaller and better models for conversational commerce","authors":"Kristen Howell, Jian Wang, Akshay Hazare, Joe Bradley, Chris Brew, Xi Chen, Matthew Dunn, Beth-Ann Hockey, Andrew Maurer, D. Widdows","doi":"10.18653/v1/2022.ecnlp-1.18","DOIUrl":null,"url":null,"abstract":"We demonstrate that knowledge distillation can be used not only to reduce model size, but to simultaneously adapt a contextual language model to a specific domain. We use Multilingual BERT (mBERT; Devlin et al., 2019) as a starting point and follow the knowledge distillation approach of (Sahn et al., 2019) to train a smaller multilingual BERT model that is adapted to the domain at hand. We show that for in-domain tasks, the domain-specific model shows on average 2.3% improvement in F1 score, relative to a model distilled on domain-general data. Whereas much previous work with BERT has fine-tuned the encoder weights during task training, we show that the model improvements from distillation on in-domain data persist even when the encoder weights are frozen during task training, allowing a single encoder to support classifiers for multiple tasks and languages.","PeriodicalId":384006,"journal":{"name":"Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.ecnlp-1.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We demonstrate that knowledge distillation can be used not only to reduce model size, but to simultaneously adapt a contextual language model to a specific domain. We use Multilingual BERT (mBERT; Devlin et al., 2019) as a starting point and follow the knowledge distillation approach of (Sahn et al., 2019) to train a smaller multilingual BERT model that is adapted to the domain at hand. We show that for in-domain tasks, the domain-specific model shows on average 2.3% improvement in F1 score, relative to a model distilled on domain-general data. Whereas much previous work with BERT has fine-tuned the encoder weights during task training, we show that the model improvements from distillation on in-domain data persist even when the encoder weights are frozen during task training, allowing a single encoder to support classifiers for multiple tasks and languages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特定领域的知识精馏为会话式商务产生更小、更好的模型
我们证明了知识蒸馏不仅可以用来减少模型的大小,而且可以同时使上下文语言模型适应特定的领域。我们使用多语言BERT (mBERT;Devlin等人,2019)作为起点,并遵循(Sahn等人,2019)的知识蒸馏方法来训练适应手头领域的较小的多语言BERT模型。我们表明,对于领域内任务,领域特定模型的F1分数平均提高了2.3%,相对于在领域通用数据上提炼的模型。尽管BERT之前的许多工作在任务训练期间对编码器权重进行了微调,但我们表明,即使在任务训练期间编码器权重冻结时,对域内数据进行蒸馏的模型改进仍然存在,从而允许单个编码器支持多个任务和语言的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Seq2seq Language Generation for Multi-level Product Issue Identification Data Quality Estimation Framework for Faster Tax Code Classification semiPQA: A Study on Product Question Answering over Semi-structured Data Clause Topic Classification in German and English Standard Form Contracts Can Pretrained Language Models Generate Persuasive, Faithful, and Informative Ad Text for Product Descriptions?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1