Research on Raman fiber amplifier using neural network combining PSO algorithm

J. Gong, Jiaojiao Lu, Ruijie Gao
{"title":"Research on Raman fiber amplifier using neural network combining PSO algorithm","authors":"J. Gong, Jiaojiao Lu, Ruijie Gao","doi":"10.1145/3573942.3573956","DOIUrl":null,"url":null,"abstract":"We propose an efficient hybrid method that combines neural network and particle swarm optimization algorithm to optimize the performance of backward multi-pumped Raman fiber amplifiers. We use a neural network to inverse system design Raman fiber amplifier by learning the nonlinear mapping relationship between pump light and the output gain. To obtain a flat gain spectrum, the particle swarm optimization algorithm is used to search for the optimal pump slight parameter configuration. The results show that when the designed Raman amplifier is oriented toward C+L band signal optical amplification, the error between the target gain value and the actual gain value is less than 0.47 dB, the output gain after optimization is 17.96dB, and the gain flatness is 0.44dB.","PeriodicalId":103293,"journal":{"name":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573942.3573956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an efficient hybrid method that combines neural network and particle swarm optimization algorithm to optimize the performance of backward multi-pumped Raman fiber amplifiers. We use a neural network to inverse system design Raman fiber amplifier by learning the nonlinear mapping relationship between pump light and the output gain. To obtain a flat gain spectrum, the particle swarm optimization algorithm is used to search for the optimal pump slight parameter configuration. The results show that when the designed Raman amplifier is oriented toward C+L band signal optical amplification, the error between the target gain value and the actual gain value is less than 0.47 dB, the output gain after optimization is 17.96dB, and the gain flatness is 0.44dB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络结合粒子群算法的拉曼光纤放大器研究
提出了一种结合神经网络和粒子群优化算法的高效混合方法来优化后向多泵浦拉曼光纤放大器的性能。通过了解泵浦光与输出增益之间的非线性映射关系,利用神经网络对拉曼光纤放大器进行系统逆设计。为了获得平坦的增益谱,采用粒子群优化算法搜索泵微参数的最优配置。结果表明,当设计的拉曼放大器面向C+L波段信号光放大时,目标增益值与实际增益值误差小于0.47 dB,优化后输出增益为17.96dB,增益平坦度为0.44dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Lightweight Method for Object Detection Incremental Encoding Transformer Incorporating Common-sense Awareness for Conversational Sentiment Recognition Non-intrusive Automatic 3D Gaze Ground-truth System Fiber Optic Gyroscope Random Error Modeling Based on Improved Kalman Filtering Channel Modeling of Spaceborne Multiwavelet Packet OFDM System Based on CWGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1