sEMG signal detector using discrete wavelet transform

C. Toledo, R. Muñoz, L. Leija
{"title":"sEMG signal detector using discrete wavelet transform","authors":"C. Toledo, R. Muñoz, L. Leija","doi":"10.1109/PAHCE.2012.6233441","DOIUrl":null,"url":null,"abstract":"This article presents a sEMG signal detector by means of different applications of the Discrete Wavelet Transform. A training system and protocol is used to acquire the sEMG signals. The last of four training stages is used. These signals are processed, segmented and labeled, automatically, as three different levels of contraction. The level's order (1-2-3) varies from one session to another. The automatic segmentation and label proved to work with the 20 sessions. Segmentation and labeling comparison of 4 training sessions' results is shown. The used algorithms provided good results with all 20 sessions.","PeriodicalId":255935,"journal":{"name":"2012 Pan American Health Care Exchanges","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Pan American Health Care Exchanges","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAHCE.2012.6233441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This article presents a sEMG signal detector by means of different applications of the Discrete Wavelet Transform. A training system and protocol is used to acquire the sEMG signals. The last of four training stages is used. These signals are processed, segmented and labeled, automatically, as three different levels of contraction. The level's order (1-2-3) varies from one session to another. The automatic segmentation and label proved to work with the 20 sessions. Segmentation and labeling comparison of 4 training sessions' results is shown. The used algorithms provided good results with all 20 sessions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表面肌电信号检测器采用离散小波变换
本文介绍了离散小波变换在表面肌电信号检测中的不同应用。采用训练系统和协议采集表面肌电信号。使用了四个训练阶段中的最后一个。这些信号被自动处理、分割和标记为三个不同程度的收缩。关卡的顺序(1-2-3)在不同的回合中是不同的。自动分割和标签被证明对20个会话有效。给出了4次训练结果的分割和标注对比。所使用的算法在所有20个会话中都提供了良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wigner distribution's cross terms characterization to detect patterns of Ventricular Late Potentials Study of the noise-ventricular late potentials sensibility on the wigner distribution time-frequency plane Simulation of the left coronay flow Flexible intravascular thermal sensors to assess atherosclerosis-mediated changes in hemodynamics Inventory quality control in clinical engineering: A Lean Six Sigma approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1