Target Motion Analysis via Hard and Soft Data Fusion

Yuthika Punchihewa, B. Vo, B. Vo, A. Bessell, S. Arulampalam, J. Irons, S. Davey
{"title":"Target Motion Analysis via Hard and Soft Data Fusion","authors":"Yuthika Punchihewa, B. Vo, B. Vo, A. Bessell, S. Arulampalam, J. Irons, S. Davey","doi":"10.1109/ICCAIS56082.2022.9990136","DOIUrl":null,"url":null,"abstract":"Target Motion Analysis (TMA) requires the online fusion of multiple hard and soft data sources for target tracking. This paper proposes a Bayesian filtering solution for multisource fusion with hard and soft data. Appropriate models for various types of hard and soft data are developed so that they can be fused in a consistent manner under the Bayesian framework. The resulting Bayes filter is highly non-linear and non-Gaussian. Hence, a parallel particle filter is developed to facilitate a user adjustable trade-off between computation time and tracking accuracy. Numerical studies on realistic scenarios are also presented.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Target Motion Analysis (TMA) requires the online fusion of multiple hard and soft data sources for target tracking. This paper proposes a Bayesian filtering solution for multisource fusion with hard and soft data. Appropriate models for various types of hard and soft data are developed so that they can be fused in a consistent manner under the Bayesian framework. The resulting Bayes filter is highly non-linear and non-Gaussian. Hence, a parallel particle filter is developed to facilitate a user adjustable trade-off between computation time and tracking accuracy. Numerical studies on realistic scenarios are also presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于软硬数据融合的目标运动分析
目标运动分析(TMA)需要在线融合多个硬、软数据源进行目标跟踪。针对软、硬数据多源融合问题,提出了一种贝叶斯滤波解决方案。为各种类型的硬数据和软数据开发了合适的模型,使它们能够在贝叶斯框架下以一致的方式融合。得到的贝叶斯滤波器是高度非线性和非高斯的。因此,开发了一种并行粒子滤波器,以方便用户在计算时间和跟踪精度之间进行可调整的权衡。对实际情况进行了数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wireless Smart Shoes for Running Gait Analysis Based on Deep Learning A quadratic correlation algorithm with variable sets of lags for frequency estimation Deployment of UAVs for Optimal Multihop Ad-hoc Networks Using Particle Swarm Optimization and Behavior-based Control Analyze the Transient Overvoltages in the station of Vietnamese model HVDC-MMC system Dual-scale generalized Radon-Fourier transform family for long time coherent integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1