Gathering, Selecting and Preparing Unstructured Documents for Enterprise Information Extraction

Mahmoud Brahimi, Kehali Nor Elhouda
{"title":"Gathering, Selecting and Preparing Unstructured Documents for Enterprise Information Extraction","authors":"Mahmoud Brahimi, Kehali Nor Elhouda","doi":"10.1109/ICRAMI52622.2021.9585994","DOIUrl":null,"url":null,"abstract":"A large amount of unstructured documents exists on the web incorporating data of paramount importance for the enterprises that can employ them to synthesize the past, to comprehend the present and to predict the future. However, it is worth noting that the unstructured nature of these documents made the handling and the extraction of knowledge from them a very critical issue. The current contribution is three-fold. First, we collect the unstructured documents which might be useful using general enterprise ontology. Then, we select the most suitable ones using specific ontologies that describe partial enterprise activities. Finally, we transform the kept documents into parsabale and requestable XML files that can be the corpus for future data extraction.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A large amount of unstructured documents exists on the web incorporating data of paramount importance for the enterprises that can employ them to synthesize the past, to comprehend the present and to predict the future. However, it is worth noting that the unstructured nature of these documents made the handling and the extraction of knowledge from them a very critical issue. The current contribution is three-fold. First, we collect the unstructured documents which might be useful using general enterprise ontology. Then, we select the most suitable ones using specific ontologies that describe partial enterprise activities. Finally, we transform the kept documents into parsabale and requestable XML files that can be the corpus for future data extraction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向企业信息提取的非结构化文档的收集、选择和准备
网络上存在着大量的非结构化文档,这些文档包含了对企业来说至关重要的数据,企业可以利用它们来综合过去、理解现在和预测未来。然而,值得注意的是,这些文件的非结构化性质使得处理和从中提取知识成为一个非常关键的问题。目前的贡献是三倍的。首先,我们收集了非结构化文档,这些文档可能对通用企业本体有用。然后,我们使用描述部分企业活动的特定本体选择最合适的本体。最后,我们将保留的文档转换为可解析和可请求的XML文件,这些文件可以作为将来数据提取的语料库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation Of The Structure FSS Using The WCIP Method For Dual Polarization Applications Impact of Mixup Hyperparameter Tunning on Deep Learning-based Systems for Acoustic Scene Classification Analysis of Solutions for a Reaction-Diffusion Epidemic Model Segmentation of Positron Emission Tomography Images Using Multi-atlas Anatomical Magnetic Resonance Imaging (MRI) Multi-Input CNN for molecular classification in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1