Archetypical motion: Supervised game behavior learning with Archetypal Analysis

R. Sifa, C. Bauckhage
{"title":"Archetypical motion: Supervised game behavior learning with Archetypal Analysis","authors":"R. Sifa, C. Bauckhage","doi":"10.1109/CIG.2013.6633609","DOIUrl":null,"url":null,"abstract":"The problem of creating believable game AI poses numerous challenges for computational intelligence research. A particular challenge consists in creating human-like behaving game bots by means of applying machine learning to game-play data recorded by human players. In this paper, we propose a novel, biologically inspired approach to behavior learning for video games. Our model is based on the idea of movement primitives and we use Archetypal Analysis to determine elementary movements from data in order to represent any player action in terms of convex combinations of archetypal motions. Given these representations, we use supervised learning in order to create a system that is able to synthesize appropriate motion behavior during a game. We apply our model to teach a first person shooter game bot how to navigate in a game environment. Our results indicate that the model is able to simulate human-like behavior at lower computational costs than previous approaches.","PeriodicalId":158902,"journal":{"name":"2013 IEEE Conference on Computational Inteligence in Games (CIG)","volume":"165 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computational Inteligence in Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2013.6633609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The problem of creating believable game AI poses numerous challenges for computational intelligence research. A particular challenge consists in creating human-like behaving game bots by means of applying machine learning to game-play data recorded by human players. In this paper, we propose a novel, biologically inspired approach to behavior learning for video games. Our model is based on the idea of movement primitives and we use Archetypal Analysis to determine elementary movements from data in order to represent any player action in terms of convex combinations of archetypal motions. Given these representations, we use supervised learning in order to create a system that is able to synthesize appropriate motion behavior during a game. We apply our model to teach a first person shooter game bot how to navigate in a game environment. Our results indicate that the model is able to simulate human-like behavior at lower computational costs than previous approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原型运动:基于原型分析的监督游戏行为学习
创造可信的游戏AI给计算智能研究带来了许多挑战。一个特殊的挑战在于通过将机器学习应用于人类玩家记录的游戏数据来创造类似人类行为的游戏机器人。在本文中,我们提出了一种新颖的、受生物学启发的电子游戏行为学习方法。我们的模型基于运动原语的理念,我们使用原型分析从数据中确定基本运动,以便根据原型运动的凸组合来表示任何玩家动作。考虑到这些表征,我们使用监督学习来创建一个能够在游戏中合成适当运动行为的系统。我们运用我们的模型教第一人称射击游戏机器人如何在游戏环境中导航。我们的结果表明,该模型能够以比以前的方法更低的计算成本模拟类似人类的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
QL-BT: Enhancing behaviour tree design and implementation with Q-learning Landscape automata for search based procedural content generation The structure of a 3-state finite transducer representation for Prisoner's Dilemma LGOAP: Adaptive layered planning for real-time videogames Evolved weapons for RPG drop systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1