Neural Networks and Statistical Analysis for Time and Cost Prediction Models of Urban Redevelopment Projects

M. Gkovedarou, Georgios N. Aretoulis
{"title":"Neural Networks and Statistical Analysis for Time and Cost Prediction Models of Urban Redevelopment Projects","authors":"M. Gkovedarou, Georgios N. Aretoulis","doi":"10.4018/IJISSC.2017100103","DOIUrl":null,"url":null,"abstract":"Over the last few years, a plethora of public works have taken place, focusing towards urban renewal, in the greater Thessaloniki district. Municipality of Thessaloniki, provided data for twelve public projects of urban renewal. Mathematical models have been proposed for cost and time prediction based on regression analysis. Furthermore, the Fast Artificial Neural Network (FANN Tool) was applied, to predict the duration and the final cost of the project, using volume of earthwork, as input variable. Both approaches could facilitate project stakeholders, to forecast the projects' final delivery date and cost and provide early warnings for any deviation from the initial budget. The results indicate that neural networks perform better than regression analysis' models, in the case of urban renewal projects.","PeriodicalId":371573,"journal":{"name":"Int. J. Inf. Syst. Soc. Chang.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Syst. Soc. Chang.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJISSC.2017100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last few years, a plethora of public works have taken place, focusing towards urban renewal, in the greater Thessaloniki district. Municipality of Thessaloniki, provided data for twelve public projects of urban renewal. Mathematical models have been proposed for cost and time prediction based on regression analysis. Furthermore, the Fast Artificial Neural Network (FANN Tool) was applied, to predict the duration and the final cost of the project, using volume of earthwork, as input variable. Both approaches could facilitate project stakeholders, to forecast the projects' final delivery date and cost and provide early warnings for any deviation from the initial budget. The results indicate that neural networks perform better than regression analysis' models, in the case of urban renewal projects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市改造项目时间和成本预测模型的神经网络与统计分析
在过去几年中,在塞萨洛尼基大区进行了大量的公共工程,重点是城市更新。塞萨洛尼基市政府为12个城市更新公共项目提供数据。提出了基于回归分析的成本和时间预测的数学模型。此外,应用快速人工神经网络(FANN)工具,以土方工程量为输入变量,预测工程工期和最终成本。这两种方法都可以帮助项目利益相关者预测项目的最终交付日期和成本,并为任何偏离初始预算的情况提供早期预警。结果表明,在城市更新项目中,神经网络比回归分析模型表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depression, Self-Esteem, and Lifestyle Factors Among University Students in Singapore and Malaysia When Big Data Meets NFT: Challenges, Impacts, and Opportunities Do We Really Need Elderly-Friendly Integrated Care Portals?: Mind Blocks to Their Adoption and Implementation Protest Movements, Social Media, and the Role of Law Enforcement Assessing the Impact of Human Error Assessment on Organization Performance in the Software Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1